SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Basit Abdul) srt2:(2015-2019)"

Search: WFRF:(Basit Abdul) > (2015-2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alomari, Mustafa, et al. (author)
  • Printing of T3 and T4 Oral Drug Combinations as a Novel Strategy for Hypothyroidism
  • 2018
  • In: International Journal of Pharmaceutics. - : Elsevier. - 0378-5173 .- 1873-3476. ; 549:1-2, s. 363-369
  • Journal article (peer-reviewed)abstract
    • Hypothyroidism is a chronic and debilitating disease that is estimated to affect 3% of the general population. Clinical experience has highlighted the synergistic value of combining triiodothyronine (T3) and thyroxine (T4) for persistent or recurrent symptoms. However, thus far a platform that enables the simultaneous and independent dosing of more than one drug for oral administration has not been developed. Thermal inkjet (TIJ) printing is a potential solution to enable the dual deposition of T3 and T4 onto orodispersible films (ODFs) for therapy personalisation. In this study, a two-cartridge TIJ printer was modified such that it could print separate solutions of T3 and T4. Dose adjustments were achieved by printing solutions adjacent to each other, enabling therapeutic T3 (15–50 μg) and T4 dosages (60–180 μg) to be successfully printed. Excellent linearity was observed between the theoretical and measured dose for both T3 and T4 (R2 = 0.982 and 0.985, respectively) by changing the length of the print objective (Y-value). Rapid disintegration of the ODFs was achieved (< 45 seconds). As such, this study for the first time demonstrates the ability to produce personalised dose combinations by TIJ printing T3 and T4 onto the same substrate for oral administration.
  •  
2.
  • Bhatt, Deepak Kumar, et al. (author)
  • Age- and Genotype-Dependent Variability in the Protein Abundance and Activity of Six Major Uridine Diphosphate-Glucuronosyltransferases in Human Liver
  • 2019
  • In: Clinical Pharmacology and Therapeutics. - : Wiley. - 0009-9236 .- 1532-6535. ; 105:1, s. 131-141
  • Journal article (peer-reviewed)abstract
    • © 2018 The American Society for Clinical Pharmacology and Therapeutics. The ontogeny of hepatic uridine diphosphate-glucuronosyltransferases (UGTs) was investigated by determining their protein abundance in human liver microsomes isolated from 136 pediatric (0-18 years) and 35 adult (age >18 years) donors using liquid chromatography / tandem mass spectrometry (LC-MS/MS) proteomics. Microsomal protein abundances of UGT1A1, UGT1A4, UGT1A6, UGT1A9, UGT2B7, and UGT2B15 increased by ∼8, 55, 35, 33, 8, and 3-fold from neonates to adults, respectively. The estimated age at which 50% of the adult protein abundance is observed for these UGT isoforms was between 2.6-10.3 years. Measured in vitro activity was generally consistent with the protein data. UGT1A1 protein abundance was associated with multiple single nucleotide polymorphisms exhibiting noticeable ontogeny-genotype interplay. UGT2B15 rs1902023 (*2) was associated with decreased protein activity without any change in protein abundance. Taken together, these data are invaluable to facilitate the prediction of drug disposition in children using physiologically based pharmacokinetic modeling as demonstrated here for zidovudine and morphine.
  •  
3.
  • Vuddanda, Parameswara Rao, et al. (author)
  • Personalisation of warfarin therapy using thermal ink-jet printing
  • 2018
  • In: European Journal of Pharmaceutical Sciences. - : Elsevier. - 0928-0987 .- 1879-0720. ; 117, s. 80-87
  • Journal article (peer-reviewed)abstract
    • Warfarin is a widely used anticoagulant that is critical in reducing patient morbidity and mortality associated with thromboembolic disorders. However, its narrow therapeutic index and large inter-individual variability can lead to complex dosage regimes. Formulating warfarin as an orodispersible film (ODF) using thermal ink-jet (TIJ) printing could enable personalisation of therapy to simplify administration. Commercial TIJ printers are currently unsuitable for printing the milligram dosages, typically required for warfarin therapy. As such, this study aimed to modify a commercial TIJ printing system to formulate personalised warfarin ODFs containing therapeutic dosages. A TIJ printer was modified successfully with the printer functionality intact; the substrate (paper) rolling mechanism of the printer was replaced by printing onto a stationary stage. Free film substrates were composed of hydroxypropyl methylcellulose (20%w/w) and glycerol (3%w/w). The resulting ODFs were characterised for morphology, disintegration, solid-state properties and drug content. Printed film stability was assessed at 40 °C/75% relative humidity for 30 days. Therapeutic warfarin doses (1.25 and 2.5 mg) were successfully printed onto the film substrates. Excellent linearity was observed between the theoretical and measured dose by changing the warfarin feed concentration (R2 = 0.9999) and length of the print objective, i.e. the Y-value, (R2 = 0.9998). Rapid disintegration of the ODFs was achieved. As such, this study successfully formulated personalised warfarin ODFs using a modified TIJ printer, widening the range of applications for TIJ printing to formulate narrow therapeutic index drugs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view