SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Coe M) srt2:(2020-2024)"

Search: WFRF:(Coe M) > (2020-2024)

  • Result 1-36 of 36
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
5.
  •  
6.
  • Wang, T, et al. (author)
  • Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4932-
  • Journal article (peer-reviewed)abstract
    • Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case–control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E−06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E−07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype–genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.
  •  
7.
  • Echelmeier, A., et al. (author)
  • Segmented flow generator for serial crystallography at the European X-ray free electron laser
  • 2020
  • In: Nature Communications. - : Nature Research. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported. 
  •  
8.
  • Eratne, D., et al. (author)
  • Plasma neurofilament light in behavioural variant frontotemporal dementia compared to mood and psychotic disorders
  • 2023
  • In: Australian and New Zealand Journal of Psychiatry. - 0004-8674. ; 58:1, s. 70-81
  • Journal article (peer-reviewed)abstract
    • Objective: Blood biomarkers of neuronal injury such as neurofilament light (NfL) show promise to improve diagnosis of neurodegenerative disorders and distinguish neurodegenerative from primary psychiatric disorders (PPD). This study investigated the diagnostic utility of plasma NfL to differentiate behavioural variant frontotemporal dementia (bvFTD, a neurodegenerative disorder commonly misdiagnosed initially as PPD), from PPD, and performance of large normative/reference data sets and models. Methods: Plasma NfL was analysed in major depressive disorder (MDD, n = 42), bipolar affective disorder (BPAD, n = 121), treatment-resistant schizophrenia (TRS, n = 82), bvFTD (n = 22), and compared to the reference cohort (Control Group 2, n = 1926, using GAMLSS modelling), and age-matched controls (Control Group 1, n = 96, using general linear models). Results: Large differences were seen between bvFTD (mean NfL 34.9 pg/mL) and all PPDs and controls (all < 11 pg/mL). NfL distinguished bvFTD from PPD with high accuracy, sensitivity (86%), and specificity (88%). GAMLSS models using reference Control Group 2 facilitated precision interpretation of individual levels, while performing equally to or outperforming models using local controls. Slightly higher NfL levels were found in BPAD, compared to controls and TRS. Conclusions: This study adds further evidence on the diagnostic utility of NfL to distinguish bvFTD from PPD of high clinical relevance to a bvFTD differential diagnosis, and includes the largest cohort of BPAD to date. Using large reference cohorts, GAMLSS modelling and the interactive Internet-based application we developed, may have important implications for future research and clinical translation. Studies are underway investigating utility of plasma NfL in diverse neurodegenerative and primary psychiatric conditions in real-world clinical settings.
  •  
9.
  • Kokorev, V., et al. (author)
  • ALMA Lensing Cluster Survey: Hubble Space Telescope and Spitzer Photometry of 33 Lensed Fields Built with CHArGE
  • 2022
  • In: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 263:2
  • Journal article (peer-reviewed)abstract
    • We present a set of multiwavelength mosaics and photometric catalogs in the Atacama Large Millimeter/ submillimeter Array (ALMA) lensing cluster survey fields. The catalogs were built by the reprocessing of archival data from the Complete Hubble Archive for Galaxy Evolution compilation, taken by the Hubble Space Telescope (HST) in the Reionization Lensing Cluster Survey, Cluster Lensing And Supernova survey with Hubble, and Hubble Frontier Fields. Additionally, we have reconstructed the Spitzer Infrared Array Camera 3.6 and 4.5 μm mosaics, by utilizing all the available archival IPAC Infrared Science Archive/Spitzer Heritage Archive exposures. To alleviate the effect of blending in such a crowded region, we have modeled the Spitzer photometry by convolving the HST detection image with the Spitzer point-spread function using the novel GOLFIR software. The final catalogs contain 218,000 sources, covering a combined area of 690 arcmin2, a factor of ∼2 improvement over the currently existing photometry. A large number of detected sources is a result of reprocessing of all available and sometimes deeper exposures, in conjunction with a combined optical–near-IR detection strategy. These data will serve as an important tool in aiding the search of the submillimeter galaxies in future ALMA surveys, as well as follow-ups of the HST dark and high-z sources with JWST. Coupled with the available HST photometry, the addition of the 3.6 and 4.5 μm bands will allow us to place a better constraint on the photometric redshifts and stellar masses of these objects, thus giving us an opportunity to identify high-redshift candidates for spectroscopic follow-ups and to answer the important questions regarding the Epoch of Reionization and formation of the first galaxies. The mosaics, photometric catalogs, and the best-fit physical properties are publicly available at https:// github.com/dawn-cph/alcs-clusters.
  •  
10.
  •  
11.
  • Diego, J. M., et al. (author)
  • JWST's PEARLS : A new lens model for ACT-CL J0102-4915, "El Gordo," and the first red supergiant star at cosmological distances discovered by JWST
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Journal article (peer-reviewed)abstract
    • The first James Webb Space Telescope (JWST) data on the massive colliding cluster El Gordo allow for 23 known families of multiply lensed images to be confirmed and for eight new members of these families to be identified. Based on these families, which have been confirmed spectroscopically by MUSE, we derived an initial lens model. This model guided the identification of 37 additional families of multiply lensed galaxies, among which 28 are entirely new systems, and nine were previously known. The initial lens model determined geometric redshifts for the 37 new systems. The geometric redshifts agree reasonably well with spectroscopic or photometric redshifts when those are available. The geometric redshifts enable two additional models that include all 60 families of multiply lensed galaxies spanning a redshift range 2 z z > 0.8 and has an estimated virial mass close the maximum mass allowed by standard cosmological models. The JWST images also reveal the presence of small-mass perturbers that produce small lensing distortions. The smallest of these is consistent with being a dwarf galaxy at z = 0.87 and has an estimated mass of 3.8 x 10(9) M-circle dot, making it the smallest substructure found at z > 0.5. The JWST images also show several candidate caustic-crossing events. One of them is detected at high significance at the expected position of the critical curve and is likely a red supergiant star at z = 2.1878. This would be the first red supergiant found at cosmological distances. The cluster lensing should magnify background objects at z > 6, making more of them visible than in blank fields of a similar size, but there appears to be a deficiency of such objects.
  •  
12.
  • Priestley, Michael, et al. (author)
  • Chemical characterisation of benzene oxidation products under high- and low-NOx conditions using chemical ionisation mass spectrometry
  • 2021
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:5, s. 3473-3490
  • Journal article (peer-reviewed)abstract
    • Aromatic hydrocarbons are a class of volatile organic compounds associated with anthropogenic activity and make up a significant fraction of urban volatile organic compound (VOC) emissions that contribute to the formation of secondary organic aerosol (SOA). Benzene is one of the most abundant species emitted from vehicles, biomass burning and industry. An iodide time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) and nitrate ToF-CIMS were deployed at the Julich Plant Atmosphere Chamber as part of a series of experiments examining benzene oxidation by OH under high- and low-NOx conditions, where a range of organic oxidation products were detected. The nitrate scheme detects many oxidation products with high masses, ranging from intermediate volatile organic compounds (IVOCs) to extremely low volatile organic compounds (ELVOCs), including C-12 dimers. In comparison, very few species with C->= 6 and O-> 8 were detected with the iodide scheme, which detected many more IVOCs and semi-volatile organic compounds (SVOCs) but very few ELVOCs and low volatile organic compounds (LVOCs). A total of 132 and 195 CHO
  •  
13.
  • Caputi, K. I., et al. (author)
  • ALMA Lensing Cluster Survey: An ALMA Galaxy Signposting a MUSE Galaxy Group at z=4.3 Behind "El Gordo"
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 908:2
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a Multi Unit Spectroscopic Explorer (MUSE) galaxy group at z = 4.32 lensed by the massive galaxy cluster ACT-CL J0102-4915 (aka El Gordo) at z = 0.87, associated with a 1.2 mm source that is at a 2.07 0.88 kpc projected distance from one of the group galaxies. Three images of the whole system appear in the image plane. The 1.2 mm source has been detected within the Atacama Large Millimetre/submillimetre Array (ALMA) Lensing Cluster Survey (ALCS). As this ALMA source is undetected at wavelengths lambda < 2 mu m, its redshift cannot be independently determined, however, the three lensing components indicate that it belongs to the same galaxy group at z = 4.32. The four members of the MUSE galaxy group have low to intermediate stellar masses (similar to 10(7)-10(10) M) and star formation rates (SFRs) of 0.4-24 M yr(-1), resulting in high specific SFRs (sSFRs) for two of them, which suggest that these galaxies are growing fast (with stellar mass doubling times of only similar to 2 x 10(7) yr). This high incidence of starburst galaxies is likely a consequence of interactions within the galaxy group, which is compact and has high velocity dispersion. Based on the magnification-corrected sub-/millimeter continuum flux density and estimated stellar mass, we infer that the ALMA source is classified as an ordinary ultra-luminous infrared galaxy (with associated dust-obscured SFR similar to 200-300 M yr(-1)) and lies on the star formation main sequence. This reported case of an ALMA/MUSE group association suggests that some presumably isolated ALMA sources are in fact signposts of richer star-forming environments at high redshifts.
  •  
14.
  • Furtak, Lukas J., et al. (author)
  • A variable active galactic nucleus at z = 2.06 triply-imaged by the galaxy cluster MACS J0035.4−2015
  • 2023
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:4, s. 5142-5151
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a triply imaged active galactic nucleus (AGN), lensed by the galaxy cluster MACS J0035.4−2015 (z d = 0.352). The object is detected in Hubble Space Telescope imaging taken for the RELICS program. It appears to have a quasi-stellar nucleus consistent with a point-source, with a de-magnified radius of re ≲ 100 pc. The object is spectroscopically confirmed to be an AGN at z spec = 2.063 ± 0.005 showing broad rest-frame UV emission lines, and detected in both X-ray observations with Chandra and in ALCS ALMA band 6 (1.2 mm) imaging. It has a relatively faint rest-frame UV luminosity for a quasar-like object, MUV, 1450 = −19.7 ± 0.2. The object adds to just a few quasars or other X-ray sources known to be multiply lensed by a galaxy cluster. Some diffuse emission from the host galaxy is faintly seen around the nucleus, and there is a faint object nearby sharing the same multiple-imaging symmetry and geometric redshift, possibly an interacting galaxy or a star-forming knot in the host. We present an accompanying lens model, calculate the magnifications and time delays, and infer the physical properties of the source. We find the rest-frame UV continuum and emission lines to be dominated by the AGN, and the optical emission to be dominated by the host galaxy of modest stellar mass M✶ ≃ 109.2 M⊙. We also observe some variation in the AGN emission with time, which may suggest that the AGN used to be more active. This object adds a low-redshift counterpart to several relatively faint AGN recently uncovered at high redshifts with HST and JWST.
  •  
15.
  • Gladding, PA, et al. (author)
  • Metabolomics and a Breath Sensor Identify Acetone as a Biomarker for Heart Failure
  • 2023
  • In: Biomolecules. - : MDPI AG. - 2218-273X. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Background: Multi-omics delivers more biological insight than targeted investigations. We applied multi-omics to patients with heart failure with reduced ejection fraction (HFrEF). Methods: 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography mass spectrometry (LC-MS/GC-MS) and solid-phase microextraction (SPME) volatilomics in plasma and urine. HFrEF was defined using left ventricular global longitudinal strain, ejection fraction and NTproBNP. A consumer breath acetone (BrACE) sensor validated results in n = 73. Results: 28 metabolites were identified by GCMS, 35 by LCMS and 4 volatiles by SPME in plasma and urine. Alanine, aspartate and glutamate, citric acid cycle, arginine biosynthesis, glyoxylate and dicarboxylate metabolism were altered in HFrEF. Plasma acetone correlated with NT-proBNP (r = 0.59, 95% CI 0.4 to 0.7), 2-oxovaleric and cis-aconitic acid, involved with ketone metabolism and mitochondrial energetics. BrACE > 1.5 ppm discriminated HF from other cardiac pathology (AUC 0.8, 95% CI 0.61 to 0.92, p < 0.0001). Conclusion: Breath acetone discriminated HFrEF from other cardiac pathology using a consumer sensor, but was not cardiac specific.
  •  
16.
  •  
17.
  • Nabizadeh, Armin, et al. (author)
  • A search for high-redshift direct-collapse black hole candidates in the PEARLS north ecliptic pole field
  • 2024
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 683
  • Journal article (peer-reviewed)abstract
    • Direct-collapse black holes (DCBHs) of mass ∼ 104-105 M⊙ that form in HI-cooling halos in the early Universe are promising progenitors of the greater than or similar to 109 M⊙ supermassive black holes that fuel observed z greater than or similar to 7 quasars. Efficient accretion of the surrounding gas onto such DCBH seeds may render them sufficiently bright for detection with the JWST up to z ≈ 20. Additionally, the very steep and red spectral slope predicted across the ≈ 1-5 μm wavelength range of the JWST/NIRSpec instrument during their initial growth phase should make them photometrically identifiable up to very high redshifts. In this work, we present a search for such DCBH candidates across the 34 arcmin2 in the first two spokes of the JWST cycle-1 PEARLS survey of the north ecliptic pole time-domain field covering eight NIRCam filters down to a maximum depth of ∼ 29 AB mag. We identify two objects with spectral energy distributions consistent with the Pacucci et al. (2016) DCBH models. However, we also note that even with data in eight NIRCam filters, objects of this type remain degenerate with dusty galaxies and obscured active galactic nuclei over a wide range of redshifts. Follow-up spectroscopy would be required to pin down the nature of these objects. Based on our sample of DCBH candidates and assumptions on the typical duration of the DCBH steep-slope state, we set a conservative upper limit of less than or similar to 5x10-4 comoving Mpc-3 (cMpc-3) on the comoving density of host halos capable of hosting DCBHs with spectral energy distributions similar to the Pacucci et al. (2016) models at z ≈ 6-14.
  •  
18.
  • Tsiligiannis, Epameinondas, et al. (author)
  • A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry
  • 2022
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:11
  • Journal article (peer-reviewed)abstract
    • Oxidation of isoprene by nitrate radicals (NO3) or by hydroxyl radicals (OH) under high NOx conditions forms a substantial amount of organonitrates (ONs). ONs impact NOx concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula C4H7NO5 are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe. From chamber experiments we found that C4H7NO5 isomers contribute 5%-17% of all measured ONs formed during nighttime and constitute more than 40% of the measured ONs after further daytime oxidation. In ambient measurements C4H7NO5 isomers usually dominate both nighttime and daytime, implying a long residence time compared to C-5 ONs which are removed more rapidly. We propose potential nighttime sources and secondary formation pathways, and test them using a box model with an updated isoprene oxidation scheme.
  •  
19.
  • Crespo, Alejandro J., et al. (author)
  • On the state-of-the-art of CFD simulations for wave energy converters within the open-source numerical framework of DualSPHysics
  • 2023
  • In: Proceedings of the 15th European Wave and Tidal Energy Conference, Bilbao, 3-7 September 2023. - : European Wave and Tidal Energy Conference.
  • Conference paper (peer-reviewed)abstract
    • There are currently several types of devices capable of harnessing wave energy, exploiting a broad variety of physical transformation processes. These devices – known as Wave Energy Converters (WECs) – are developed to maximize their power output. However, there are still uncertainties about their response and survivability to loads induced by adverse environmental conditions, with a consequent increase of the Levelized Cost of Energy (LCOE), which prevents in fact their commercial diffusion. As evidenced by a large body of research, marine renewable energy devices need to have more robust design practices. To address this issue, we propose the CFD-based DualSPHysics toolbox as a support in the design stages. DualSPHysics is high-fidelity software inherently suited to numerically address most challenges posed by multiphysics simulations, which are required to reliably predict WEC response in situations well beyond operational conditions. It should be noted that WECs, generally, may be connected to the seabed and comprise mechanical systems named Power Take-Offs (PTO) used to convert the energy from waves into electricity or other usable energies. To reproduce these features, DualSPHysics benefits from coupling with the multiphysics library Project Chrono and the dynamic mooring model Moordyn+. In this work, the augmented DualSPHysics framework is utilised to simulate a range of very different types of WECs with a variety of elements, such as catenary connections, taut mooring lines, or linear and nonlinear PTO actuators. Version 5.2 of the open-source licensed code was recently released, making the numerical framework publicly available as one unit. This work aims to provide a numerical review of past applications, and to demonstrate how the same open-source code is able to simulate very different technologies.Specifically, this paper proposes routine modeling and validation procedures using the SPH-based solver DualSPHysics applied to five different WEC types: i) a moored point absorber (PA); ii) an oscillating wave surge converter (OWSC); iii) a floating OWSC (so called FOSWEC); iv) a wave energy hyperbaric converter (WEHC); and v) a multi-body attenuator (so called Multi-float M4). For each device listed above, we provide validation proof against physical model data for various components of the floater(s) and PTO related quantities, performed under specific sea conditions that aim to challenge their survivability. Within the scope of this research, we present the WEC response with respect to the degrees of freedom that really matter for each of the floatings due to hydrodynamic interactions (i.e., heave, surge, and pitch), along with quantities more intimately connected to the anchoring systems (e.g., line tension) or the mechanical apparatus (e.g., end-stopper force). The quality of the results, the discussion built upon them and the demonstrated solver exploitability to a wide range of WECs show that one software model can run all cases using the exact same methodology, which is of great value for the marine energy R&D community. Finally, we discuss future research objectives, which include the implementation of automation to apply open control systems and possible applications to subsets of WEC farm arrays and other floating energy harnessing devices.
  •  
20.
  • Diego, Jose M., et al. (author)
  • JWST's PEARLS : Mothra, a new kaiju star at z=2.091 extremely magnified by MACS0416, and implications for dark matter models
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 679
  • Journal article (peer-reviewed)abstract
    • We report the discovery of Mothra, an extremely magnified monster star, likely a binary system of two supergiant stars, in one of the strongly lensed galaxies behind the galaxy cluster MACS J0416.1-2403. Mothra is in a galaxy with spectroscopic redshift z = 2.091 in a portion of the galaxy that is parsecs away from the cluster caustic. The binary star is observed only on the side of the critical curve with negative parity but has been detectable for at least eight years, implying the presence of a small lensing perturber. Microlenses alone cannot explain the earlier observations of this object made with the Hubble Space Telescope. A larger perturber with a mass of at least 10(4 )M(circle dot) offers a more satisfactory explanation. Based on the lack of perturbation on other nearby sources in the same arc, the maximum mass of the perturber is 2.5 x 10(6) M-circle dot, making this the smallest substructure constrained by lensing at z > 0.3. The existence of this millilens is fully consistent with expectations from standard cold dark matter cosmology. On the other hand, the existence of such a small substructure in a cluster environment has implications for other dark matter models. In particular, warm dark matter models with particle masses below 8.7 keV are excluded by our observations. Similarly, axion dark matter models are consistent with the observations only if the axion mass is in the range 0.5 x 10(-22) eV < m(a )< 5 x 10(-22) eV.
  •  
21.
  • Gladding, PA, et al. (author)
  • Multiomics, virtual reality and artificial intelligence in heart failure
  • 2021
  • In: Future cardiology. - : Future Medicine Ltd. - 1744-8298 .- 1479-6678. ; 17:8, s. 1335-1347
  • Journal article (peer-reviewed)abstract
    • Aim: Multiomics delivers more biological insight than targeted investigations. We applied multiomics to patients with heart failure (HF) and reduced ejection fraction (HFrEF), with machine learning applied to advanced ECG (AECG) and echocardiography artificial intelligence (Echo AI). Patients & methods: In total, 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography–mass spectrometry and solid-phase microextraction volatilomics in plasma and urine. HFrEF was defined using left ventricular (LV) global longitudinal strain, EF and N-terminal pro hormone BNP. AECG and Echo AI were performed over 5 min, with a subset of patients undergoing a virtual reality mental stress test. Results: A-ECG had similar diagnostic accuracy as N-terminal pro hormone BNP for HFrEF (area under the curve = 0.95, 95% CI: 0.85–0.99), and correlated with global longitudinal strain (r = -0.77, p < 0.0001), while Echo AI-generated measurements correlated well with manually measured LV end diastolic volume r = 0.77, LV end systolic volume r = 0.8, LVEF r = 0.71, indexed left atrium volume r = 0.71 and indexed LV mass r = 0.6, p < 0.005. AI-LVEF and other HFrEF biomarkers had a similar discrimination for HFrEF (area under the curve AI-LVEF = 0.88; 95% CI: -0.03 to 0.15; p = 0.19). Virtual reality mental stress test elicited arrhythmic biomarkers on AECG and indicated blunted autonomic responsiveness (alpha 2 of RR interval variability, p = 1 × 10-4) in HFrEF. Conclusion: Multiomics-related machine learning shows promise for the assessment of HF.
  •  
22.
  •  
23.
  •  
24.
  • Mehra, A., et al. (author)
  • The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy
  • 2021
  • In: Faraday Discussions. - 1359-6640. ; 226, s. 382-408
  • Journal article (peer-reviewed)abstract
    • Cooking emissions account for a significant proportion of the organic aerosols emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system. In addition to the thickness-dependent kinetics, we show that significant fractions of unreacted proxy remain after extensive ozone exposure and that this effect scales approximately linearly with film thickness, suggesting that a late-stage inert reaction product may form and inhibit reaction progress - effectively building up an inert crust. We determine this by using a range of simultaneous analytical techniques; most notably Small-Angle X-ray Scattering (SAXS) has been used for the first time to measure the reaction kinetics of films of a wide range of thicknesses from ca. 0.59 to 73 mu m with films <10 mu m thick being of potential atmospheric relevance. These observations have implications for the evolution of particulate matter in the urban environment, potentially extending the atmospheric lifetimes of harmful aerosol components and affecting the local urban air quality and climate.
  •  
25.
  • Mehra, A., et al. (author)
  • Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing
  • 2021
  • In: Faraday Discussions. - 1359-6640. ; 226, s. 382-408
  • Journal article (peer-reviewed)abstract
    • Organic aerosols, a major constituent of fine particulate mass in megacities, can be directly emitted or formed from secondary processing of biogenic and anthropogenic volatile organic compound emissions. The complexity of volatile organic compound emission sources, speciation and oxidation pathways leads to uncertainties in the key sources and chemistry leading to formation of organic aerosol in urban areas. Historically, online measurements of organic aerosol composition have been unable to resolve specific markers of volatile organic compound oxidation, while offline analysis of markers focus on a small proportion of organic aerosol and lack the time resolution to carry out detailed statistical analysis required to study the dynamic changes in aerosol sources and chemistry. Here we use data collected as part of the joint UK-China Air Pollution and Human Health (APHH-Beijing) collaboration during a field campaign in urban Beijing in the summer of 2017 alongside laboratory measurements of secondary organic aerosol from oxidation of key aromatic precursors (1,3,5-trimethyl benzene, 1,2,4-trimethyl benzene, propyl benzene, isopropyl benzene and 1-methyl naphthalene) to study the anthropogenic and biogenic contributions to organic aerosol. For the first time in Beijing, this study applies positive matrix factorisation to online measurements of organic aerosol composition from a time-of-flight iodide chemical ionisation mass spectrometer fitted with a filter inlet for gases and aerosols (FIGAERO-ToF-I-CIMS). This approach identifies the real-time variations in sources and oxidation processes influencing aerosol composition at a near-molecular level. We identify eight factors with distinct temporal variability, highlighting episodic differences in OA composition attributed to regional influences and in situ formation. These have average carbon numbers ranging from C-5-C-9 and can be associated with oxidation of anthropogenic aromatic hydrocarbons alongside biogenic emissions of isoprene, alpha -pinene and sesquiterpenes.
  •  
26.
  • Welch, Brian, et al. (author)
  • RELICS : Small-scale Star Formation in Lensed Galaxies at z=6-10
  • 2023
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 943:1
  • Journal article (peer-reviewed)abstract
    • Detailed observations of star-forming galaxies at high redshift are critical to understanding the formation and evolution of the earliest galaxies. Gravitational lensing provides an important boost, allowing observations at physical scales unreachable in unlensed galaxies. We present three lensed galaxies from the RELICS survey at z (phot) = 6-10, including the most highly magnified galaxy at z (phot) similar to 6 (WHL 0137-zD1, dubbed the Sunrise Arc), the brightest known lensed galaxy at z (phot) similar to 6 (MACS 0308-zD1), and the only spatially resolved galaxy currently known at z (phot) similar to 10 (SPT 0615-JD). The Sunrise Arc contains seven star-forming clumps with delensed radii as small as 3 pc, the smallest spatial scales yet observed in a z > 6 galaxy, while SPT 0615-JD contains features measuring a few tens of parsecs. MACS 0308-zD1 contains an r similar to 30 pc clump with a star formation rate (SFR) of similar to 3 M (circle dot) yr(-1), giving it an SFR surface density of sigma(SFR) similar to 10(3) M (circle dot) yr(-1) kpc(-2). These galaxies provide a unique window into small-scale star formation during the epoch of reionization. They will be excellent targets for future observations with JWST, including one approved program targeting the Sunrise Arc.
  •  
27.
  • Windhorst, Rogier A., et al. (author)
  • JWST PEARLS. Prime extragalactic areas for reionization and lensing science : project overview and first results
  • 2023
  • In: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 165:1
  • Journal article (peer-reviewed)abstract
    • We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μm. PEARLS is designed to be of lasting benefit to the community.
  •  
28.
  • Fudamoto, Yoshinobu, et al. (author)
  • The Extended [C II] under Construction? : Observation of the Brightest High-z Lensed Star-forming Galaxy at z=6.2
  • 2024
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 961:1
  • Journal article (peer-reviewed)abstract
    • We present results of [C ii] 158 μm emission line observations, and report the spectroscopic redshift confirmation of a strongly lensed (μ ∼ 20) star-forming galaxy, MACS0308-zD1 at z = 6.2078 ± 0.0002. The [C ii] emission line is detected with a signal-to-noise ratio >6 within the rest-frame UV-bright clump of the lensed galaxy (zD1.1) and exhibits multiple velocity components; the narrow [C ii] has a velocity full width half maximum (FWHM) of 110 ± 20 km s−1, while broader [C ii] is seen with an FWHM of 230 ± 50 km s−1. The broader [C ii] component is blueshifted (−80 ± 20 km s−1) with respect to the narrow [C ii] component, and has a morphology that extends beyond the UV-bright clump. We find that, while the narrow [C ii] emission is most likely associated with zD1.1, the broader component is possibly associated with a physically distinct gas component from zD1.1 (e.g., outflowing or inflowing gas). Based on the nondetection of λ158μm dust continuum, we find that MACS0308-zD1's star formation activity occurs in a dust-free environment indicated by a strong upper limit of infrared luminosity ≲9 × 108L⊙. Targeting this strongly lensed faint galaxy for follow-up Atacama Large Millimeter/submillimeter Array and JWST observations will be crucial to characterize the details of typical galaxy growth in the early Universe.
  •  
29.
  • Hsiao, Tiger Yu-Yang, et al. (author)
  • JWST Reveals a Possible z similar to 11 Galaxy Merger in Triply Lensed MACS0647-JD
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 949:2
  • Journal article (peer-reviewed)abstract
    • MACS0647-JD is a triply lensed z similar to 11 galaxy originally discovered with the Hubble Space Telescope. The three lensed images are magnified by factors of similar to 8, 5, and 2 to AB mag 25.1, 25.6, and 26.6 at 3.5 mu m. The brightest is over a magnitude brighter than other galaxies recently discovered at similar redshifts z > 10 with JWST. Here, we report new JWST imaging that clearly resolves MACS0647-JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. The brighter larger component "A" is intrinsically very blue (ss similar to-2.6 +/- 0.1), likely due to very recent star formation and no dust, and is spatially extended with an effective radius similar to 70 +/- 24 pc. The smaller component "B" (r similar to 20-+ 58 pc) appears redder (ss similar to-2 +/- 0.2), likely because it is older (100-200 Myr) with mild dust extinction (AV similar to 0.1 mag). With an estimated stellar mass ratio of roughly 2:1 and physical projected separation similar to 400 pc, we may be witnessing a galaxy merger 430 million years after the Big Bang. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be dissimilar, which is also suggested by the spectral energy distribution fitting, suggesting they formed further apart. We also identify a candidate companion galaxy "C" similar to 3 kpc away, likely destined to merge with A and B. Upcoming JWST Near Infrared Spectrograph observations planned for 2023 January will deliver spectroscopic redshifts and more physical properties for these tiny magnified distant galaxies observed in the early universe.
  •  
30.
  •  
31.
  • Meena, Ashish Kumar, et al. (author)
  • Two Lensed Star Candidates at z similar or equal to 4.8 behind the Galaxy Cluster MACS J0647.7+7015
  • 2023
  • In: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 944:1
  • Journal article (peer-reviewed)abstract
    • We report the discovery of two extremely magnified lensed star candidates behind the galaxy cluster MACS J0647.7+015 using recent multiband James Webb Space Telescope (JWST) NIRCam observations. The star candidates are seen in a previously known, z (phot) similar or equal to 4.8 dropout giant arc that straddles the critical curve. The candidates lie near the expected critical curve position, but lack clear counter-images on the other side of it, suggesting these are possibly stars undergoing caustic crossings. We present revised lensing models for the cluster, including multiply imaged galaxies newly identified in the JWST data, and use them to estimate background macro-magnifications of at least greater than or similar to 90 and greater than or similar to 50 at the positions of the two candidates, respectively. With these values, we expect effective, caustic-crossing magnifications of similar to[10(3)-10(5)] for the two star candidates. The spectral energy distributions of the two candidates match well the spectra of B-type stars with best-fit surface temperatures of similar to 10,000 K, and similar to 12,000 K, respectively, and we show that such stars with masses greater than or similar to 20 M (circle dot) and greater than or similar to 50 M (circle dot), respectively, can become sufficiently magnified to be observable. We briefly discuss other alternative explanations and conclude that these objects are likely lensed stars, but also acknowledge that the less-magnified candidate may alternatively reside in a star cluster. These star candidates constitute the second highest-redshift examples to date after Earendel at z (phot) similar or equal to 6.2, establishing further the potential of studying extremely magnified stars at high redshifts with JWST. Planned future observations, including with NIRSpec, will enable a more detailed view of these candidates in the near future.
  •  
32.
  • Meena, Ashish Kumar, et al. (author)
  • Two Lensed Star Candidates at z ≃ 4.8 behind the Galaxy Cluster MACS J0647.7+7015
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:1
  • Journal article (peer-reviewed)abstract
    • We report the discovery of two extremely magnified lensed star candidates behind the galaxy cluster MACS J0647.7+015 using recent multiband James Webb Space Telescope (JWST) NIRCam observations. The star candidates are seen in a previously known, zphot ≃ 4.8 dropout giant arc that straddles the critical curve. The candidates lie near the expected critical curve position, but lack clear counter-images on the other side of it, suggesting these are possibly stars undergoing caustic crossings. We present revised lensing models for the cluster, including multiply imaged galaxies newly identified in the JWST data, and use them to estimate background macro-magnifications of at least ≳90 and ≳50 at the positions of the two candidates, respectively. With these values, we expect effective, caustic-crossing magnifications of ∼[103–105] for the two star candidates. The spectral energy distributions of the two candidates match well the spectra of B-type stars with best-fit surface temperatures of ∼10,000 K, and ∼12,000 K, respectively, and we show that such stars with masses ≳20 M⊙ and ≳50 M⊙, respectively, can become sufficiently magnified to be observable. We briefly discuss other alternative explanations and conclude that these objects are likely lensed stars, but also acknowledge that the less-magnified candidate may alternatively reside in a star cluster. These star candidates constitute the second highest-redshift examples to date after Earendel at zphot ≃ 6.2, establishing further the potential of studying extremely magnified stars at high redshifts with JWST. Planned future observations, including with NIRSpec, will enable a more detailed view of these candidates in the near future.
  •  
33.
  • Spatially Resolved Stellar Populations of 0.3 < z < 6.0 Galaxies in WHL 0137–08 and MACS 0647+70 Clusters as Revealed by JWST : How Do Galaxies Grow and Quench over Cosmic Time?
  • 2023
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 945:2
  • Journal article (peer-reviewed)abstract
    • We study the spatially resolved stellar populations of 444 galaxies at 0.3 < z < 6.0 in two clusters (WHL 0137–08 and MACS 0647+70) and a blank field, combining imaging data from the Hubble Space Telescope and JWST to perform spatially resolved spectral energy distribution (SED) modeling using ᴘɪXᴇᴅꜰɪᴛ. The high spatial resolution of the imaging data combined with magnification from gravitational lensing in the cluster fields allows us to resolve a large fraction of our galaxies (109) to subkiloparsec scales. At redshifts around cosmic noon and higher (2.5 ≲ z ≲ 6.0), we find mass-doubling times to be independent of radius, inferred from flat specific star formation rate (sSFR) radial profiles and similarities between the half-mass and half-SFR radii. At lower redshifts (1.5 ≲ z ≲ 2.5), a significant fraction of our star-forming galaxies shows evidence for nuclear starbursts, inferred from a centrally elevated sSFR and a much smaller half-SFR radius compared to the half-mass radius. At later epochs, we find more galaxies suppress star formation in their centers but are still actively forming stars in the disk. Overall, these trends point toward a picture of inside-out galaxy growth consistent with theoretical models and simulations. We also observe a tight relationship between the central mass surface density and global stellar mass with ∼0.38 dex scatter. Our analysis demonstrates the potential of spatially resolved SED analysis with JWST data. Future analysis with larger samples will be able to further explore the assembly of galaxy mass and the growth of their structures.
  •  
34.
  • Vanzella, Eros, et al. (author)
  • JWST/NIRCam Probes Young Star Clusters in the Reionization Era Sunrise Arc
  • 2023
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 945:1
  • Journal article (peer-reviewed)abstract
    • Star cluster formation in the early universe and its contribution to reionization remains largely unconstrained to date. Here we present JWST/NIRCam imaging of the most highly magnified galaxy known at z ∼ 6, the Sunrise arc. We identify six young massive star clusters (YMCs) with measured radii spanning from ∼20 down to ∼1 pc (corrected for lensing magnification), estimated stellar masses of ∼106–7 M⊙, and ages of 1–30 Myr based on SED fitting to photometry measured in eight filters extending to rest frame 7000 Å. The resulting stellar mass surface densities are higher than 1000 M⊙ pc−2 (up to a few 105 M⊙ pc−2), and their inferred dynamical ages qualify the majority of these systems as gravitationally bound stellar clusters. The star cluster ages map the progression of star formation along the arc, with two evolved systems (≳10 Myr old) followed by very young clusters. The youngest stellar clusters (<5 Myr) show evidence of prominent Hβ+[O ııı] emission based on photometry with equivalent widths larger than >1000 Å rest frame and are hosted in a 200 pc sized star-forming complex. Such a region dominates the ionizing photon production with a high efficiency log(ξion [Hz erg-1]~25.7 . A significant fraction of the recently formed stellar mass of the galaxy (10%–30%) occurred in these YMCs. We speculate that such sources of ionizing radiation boost the ionizing photon production efficiency, which eventually carves ionized channels that might favor the escape of Lyman continuum radiation. The survival of some of the clusters would make them the progenitors of massive and relatively metal-poor globular clusters in the local universe.
  •  
35.
  • Welch, Brian, et al. (author)
  • A highly magnified star at redshift 6.2
  • 2022
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 603:7903, s. 815-818
  • Journal article (peer-reviewed)abstract
    • Galaxy clusters magnify background objects through strong gravitational lensing. Typical magnifications for lensed galaxies are factors of a few but can also be as high as tens or hundreds, stretching galaxies into giant arcs(1,2). Individual stars can attain even higher magnifications given fortuitous alignment with the lensing cluster. Recently, several individual stars at redshifts between approximately 1 and 1.5 have been discovered, magnified by factors of thousands, temporarily boosted by microlensing(3-6). Here we report observations of a more distant and persistent magnified star at a redshift of 6.2 +/- 0.1, 900 million years after the Big Bang. This star is magnified by a factor of thousands by the foreground galaxy cluster lens WHL0137-08 (redshift 0.566), as estimated by four independent lens models. Unlike previous lensed stars, the magnification and observed brightness (AB magnitude, 27.2) have remained roughly constant over 3.5 years of imaging and follow-up. The delensed absolute UV magnitude, -10 +/- 2, is consistent with a star of mass greater than 50 times the mass of the Sun. Confirmation and spectral classification are forthcoming from approved observations with the James Webb Space Telescope.
  •  
36.
  • Welch, Brian, et al. (author)
  • JWST Imaging of Earendel, the Extremely Magnified Star at Redshift z=6.2
  • 2022
  • In: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 940
  • Journal article (peer-reviewed)abstract
    • The gravitationally lensed star WHL 0137-LS, nicknamed Earendel, was identified with a photometric redshift z (phot) = 6.2 +/- 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8-5.0 mu m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to mu > 4000 and restricting the source plane radius further to r < 0.02 pc, or similar to 4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T (eff) similar to 13,000-16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log(L)=5.8 L-theta, which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-36 of 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view