SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Constantinidis C.) srt2:(2003-2004)"

Search: WFRF:(Constantinidis C.) > (2003-2004)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Compte, A., et al. (author)
  • Temporally Irregular Mnemonic Persistent Activity in Prefrontal Neurons of Monkeys during a Delayed Response Task
  • 2003
  • In: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 90:5, s. 3441-3454
  • Journal article (peer-reviewed)abstract
    • An important question in neuroscience is whether and how temporal patterns and fluctuations in neuronal spike trains contribute to information processing in the cortex. We have addressed this issue in the memory-related circuits of the prefrontal cortex by analyzing spike trains from a database of 229 neurons recorded in the dorsolateral prefrontal cortex of 4 macaque monkeys during the performance of an oculomotor delayed-response task. For each task epoch, we have estimated their power spectrum together with interspike interval histograms and autocorrelograms. We find that 1) the properties of most (about 60%) neurons approximated the characteristics of a Poisson process. For about 25% of cells, with characteristics typical of interneurons, the power spectrum showed a trough at low frequencies (<20 Hz) and the autocorrelogram a dip near zero time lag. About 15% of neurons had a peak at <20 Hz in the power spectrum, associated with the burstiness of the spike train, 2) a small but significant task dependency of spike-train temporal structure: delay responses to preferred locations were characterized not only by elevated firing, but also by suppressed power at low (<20 Hz) frequencies, and 3) the variability of interspike intervals is typically higher during the mnemonic delay period than during the fixation period, regardless of the remembered cue. The high irregularity of neural persistent activity during the delay period is likely to be a characteristic signature of recurrent prefrontal network dynamics underlying working memory.
  •  
2.
  • Wang, X.-J., et al. (author)
  • Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory
  • 2004
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 101:5, s. 1368-1373
  • Journal article (peer-reviewed)abstract
    • A conspicuous feature of cortical organization is the wide diversity of inhibitory interneurons, their differential computational functions remain unclear. Here we propose a local cortical circuit in which three major subtypes of interneurons play distinct roles. In a model designed for spatial working memory, stimulus tuning of persistent activity arises from the concerted action of widespread inhibition mediated by perisoma-targeting (parvalbumin-containing) interneurons and localized disinhibition of pyramidal cells via interneuron-targeting (calretinin-containing) interneurons. Moreover, resistance against distracting stimuli (a fundamental property of working memory) is dynamically controlled by dendrite-targeting (calbindin-containing) interneurons. The experimental observation of inverted tuning curves of monkey prefrontal neurons recorded during working memory supports a key model prediction. This work suggests a framework for understanding the division of labor and cooperation among different inhibitory cell types in a recurrent cortical circuit.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view