SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Domann G) "

Search: WFRF:(Domann G)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Heldt, G., et al. (author)
  • Approach to combine electron-beam lithography and two-photon polymerization for enhanced nano-channels in network-based biocomputation devices
  • 2018
  • In: 34th European Mask and Lithography Conference. - : SPIE. - 9781510621213 ; 10775
  • Conference paper (peer-reviewed)abstract
    • Although conventional computer technology made a huge leap forward in the past decade, a vast number of computational problems remain inaccessible due to their inherently complex nature. One solution to deal with this computational complexity is to highly parallelize computations and to explore new technologies beyond semiconductor computers. Here, we report on initial results leading to a device employing a biological computation approach called network-based biocomputation (NBC). So far, the manufacturing process relies on conventional Electron Beam Lithography (EBL). However we show first promising results expanding EBL patterning to the third dimension by employing Two-Photon Polymerization (2PP). The nanofabricated structures rely on a combination of physical and chemical guiding of the microtubules through channels. Microtubules travelling through the network make their way through a number of different junctions. Here it is imperative that they do not take wrong turns. In order to decrease the usage of erroneous paths in the network a transition from planar 2-dimensional (mesh structure) networks to a design in which the crossing points of the mesh extend into the 3rd dimension is made. EBL is used to fabricate the 2D network structure whereas for the 3D-junctions 2PP is used. The good adaptation of the individual technologies allows for the possibility of a future combination of the two complementary approaches.
  •  
2.
  • Uhlig, Steffen, et al. (author)
  • Preventing of dewetting effects for inorganic-organic hybrid polymers applied in sequentially buildup (SBU) technology without surface pretreatments
  • 2006
  • In: IEEE transactions on electronics packaging manufacturing (Print). - 1521-334X .- 1558-0822. ; 29:4, s. 297-307
  • Journal article (peer-reviewed)abstract
    • Upon processing waveguide structures by using the ORMOCER materials ORMOCORE as core material, and a mixture of ORMOCORE and ORMOCER-III (refractive index tuning agent) as cladding material, dewetting effects of the core layer from the cladding layer were observed. A similar phenomenon was observed for a mixture of ORMOCORE and ORMOCLAD which was used as comparative refractive index tuning material. In order to use these material combinations for large-area panel (LAP) processing, a pretreatment or activation of surfaces is necessary but hard to realize. However, the addition of small amounts of ORMOCER-III or ORMOCLAD, respectively, to the core layer material, prevented the dewetting phenomenon. The objective of this, however, is to minimize the content of refractive index tuning agent in the core layer by retaining a good wetting behavior during multilayer processing. Wet film stability tests and contact angle measurements of these ORMOCER systems in various compositions on another ORMOCER surface of a specific cladding material composition were performed on a hotplate. Furthermore, contact angles of droplets formed by deionized water, formamide, and di-iodomethane on cured surfaces of these ORMOCER systems in a wide range of compositions were characterized, and surface tensions were calculated. By adding 0.1 wt% of ORMOCER-III or 5 wt% ORMOCLAD, respectively, to the pure ORMOCORE solution, the dewetting phenomenon was eliminated, while simultaneously the refractive index was affected only to a minor degree and no changes in the optical loss could be detected. It was shown that by adding ORMOCER-III or ORMOCLAD to pure ORMOCORE, the surface tension of the compound system was reduced. In comparison to silanization or gasplasma treatment to overcome dewetting effects in microelectronics multilayer processing, the investigated mixing method eliminates process steps and thus costs, and opens new process routes for LAP processing. © 2006 IEEE.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view