SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Donzel Gargand Olivier) srt2:(2019)"

Search: WFRF:(Donzel Gargand Olivier) > (2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cunha, Jose M., V, et al. (author)
  • Decoupling of Optical and Electrical Properties of Rear Contact CIGS Solar Cells
  • 2019
  • In: IEEE Journal of Photovoltaics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2156-3381 .- 2156-3403. ; 9:6, s. 1857-1862
  • Journal article (peer-reviewed)abstract
    • A novel architecture that comprises rear interface passivation and increased rear optical reflection is presented with the following advantages: i) enhanced optical reflection is achieved by the deposition of a metallic layer over the Mo rear contact; ii) improved interface qualitywithCIGS by adding a sputteredAl 2O 3 layer over the metallic layer; and, iii) optimal ohmic electrical contact ensured by rear-openings refilling with a second layer of Mo as generally observed from the growth of CIGS on Mo. Hence, a decoupling between the electrical function and the optical purpose of the rear substrate is achieved. We present in detail the manufacturing procedure of such type of architecture together with its benefits and caveats. A preliminary analysis showing an architecture proof-of-concept is presented and discussed.
  •  
2.
  • Donzel-Gargand, Olivier, et al. (author)
  • Secondary phase formation and surface modification from a high dose KF-post deposition treatment of (Ag,Cu)(In,Ga)Se-2 solar cell absorbers
  • 2019
  • In: Progress in Photovoltaics. - : Wiley. - 1062-7995 .- 1099-159X. ; 27:3, s. 220-228
  • Journal article (peer-reviewed)abstract
    • In this study, we assessed the potential of KF-post deposition treatment (PDT) performed on a silver-alloyed Cu (In,Ga)Se-2 (ACIGS) solar absorber. ACIGS absorbers with Ag/Ag + Cu ratio (Ag/I) close to 20% were co-evaporated on a Mo-coated glass substrate and exposed to in-situ KF-PDT of various intensities. The current-voltage characteristics indicated that an optimized PDT can be beneficial, increasing in our study the median V-oc and efficiency values by +48 mV and + 0.9%(abs) (from 728 mV and 16.1% efficiency measured for the sample without PDT), respectively. However, an increased KF-flux during PDT resulted in a net deterioration of the performance leading to median V-oc and efficiency values as low as 503 mV and 4.7%. The chemical composition analysis showed that while the reference absorber without any post deposition treatment (PDT) was homogeneous, the KF-PDT induced a clear change within the first 10 nm from the surface. Here, the surface layer composition was richer in K and In with an increased Ag/I ratio, and its thickness seemed to follow the KF exposure intensity. Additionally, high-dose KF-PDT resulted in substantial formation of secondary phases for the ACIGS. The secondary phase precipitates were also richer in Ag, K, and In, and electron and X-ray diffraction data match with the monoclinic C 1 2/c 1 space group adopted by the Ag-alloyed KInSe2 phase. It could not be concluded whether the performance loss for the solar cell devices originated from the thicker surface layer or the presence of secondary phases, or both for the high-dose KF-PDT sample.
  •  
3.
  • Lopes, Tomas S., et al. (author)
  • Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cells
  • 2019
  • In: IEEE Journal of Photovoltaics. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2156-3381 .- 2156-3403. ; 9:5, s. 1421-1427
  • Journal article (peer-reviewed)abstract
    • Currently, one of the main limitations in ultrathin Cu(In,Ga)Se-2 (CIGS) solar cells are the optical losses, since the absorber layer is thinner than the light optical path. Hence, light management, including rear optical reflection, and light trapping is needed. In this paper, we focus on increasing the rear optical reflection. For this, a novel structure based on having a metal interlayer in between the Mo rear contact and the rear passivation layer is presented. In total, eight different metallic interlayers are compared. For the whole series, the passivation layer is aluminum oxide (Al2O3). The interlayers are used to enhance the reflectivity of the rear contact and thereby increasing the amount of light reflected back into the absorber. In order to understand the effects of the interlayer in the solar cell performance both from optical and/or electrical point of view, optical simulations were performed together with fabrication and electrical measurements. Optical simulations results are compared with current density-voltage (J-V) behavior and external quantum efficiency measurements. A detailed comparison between all the interlayers is done, in order to identify the material with the greatest potential to he used as a rear reflective layer for ultrathin CIGS solar cells and to establish fabrication challenges. The Ti-W alloy is a promising a rear reflective layer since it provides solar cells with light to power conversion efficiency values of 9.9%, which is 2.2% (abs) higher than the passivated ultrathin sample and 3.7% (abs) higher than the unpassivated ultrathin reference sample.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view