SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ederth J) srt2:(2015-2019)"

Search: WFRF:(Ederth J) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Halvardson, Jonatan, et al. (author)
  • Mutations in HECW2 are associated with intellectual disability and epilepsy
  • 2016
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 53:10, s. 697-704
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: De novo mutations are a frequent cause of disorders related to brain development. We report the results of screening patients diagnosed with both epilepsy and intellectual disability (ID) using exome sequencing to identify known and new causative de novo mutations relevant to these conditions.METHODS: Exome sequencing was performed on 39 patient-parent trios to identify de novo mutations. Clinical significance of de novo mutations in genes was determined using the American College of Medical Genetics and Genomics standard guidelines for interpretation of coding variants. Variants in genes of unknown clinical significance were further analysed in the context of previous trio sequencing efforts in neurodevelopmental disorders.RESULTS: In 39 patient-parent trios we identified 29 de novo mutations in coding sequence. Analysis of de novo and inherited variants yielded a molecular diagnosis in 11 families (28.2%). In combination with previously published exome sequencing results in neurodevelopmental disorders, our analysis implicates HECW2 as a novel candidate gene in ID and epilepsy.CONCLUSIONS: Our results support the use of exome sequencing as a diagnostic approach for ID and epilepsy, and confirm previous results regarding the importance of de novo mutations in this patient group. The results also highlight the utility of network analysis and comparison to previous large-scale studies as strategies to prioritise candidate genes for further studies. This study adds knowledge to the increasingly growing list of causative and candidate genes in ID and epilepsy and highlights HECW2 as a new candidate gene for neurodevelopmental disorders.
  •  
4.
  • Tilbury, Maura A., et al. (author)
  • The expression and characterization of recombinant cp19k barnacle cement protein from Pollicipes pollicipes
  • 2019
  • In: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : ROYAL SOC. - 0962-8436 .- 1471-2970. ; 374:1784
  • Journal article (peer-reviewed)abstract
    • Adhesive proteins of barnacle cement have potential as environmentally friendly adhesives owing to their ability to adhere to various substrates in aqueous environments. By understanding the taxonomic breath of barnacles with different lifestyles, we may uncover commonalities in adhesives produced by these specialized organisms. The 19 kDa cement protein (cp19k) of the stalked barnacle Pollicipes pollicipes was expressed in Escherichia coli BL21 to investigate its adhesive properties. Initial expression of hexahistidine-tagged protein (rPpolcp19k-his) yielded low levels of insoluble protein. Co-overproduction of E. coli molecular chaperones GroEL-GroES and trigger factor (TF) increased soluble protein yields, although TF co-purified with the target protein (TF-rPpolcp19k-his). Surface coat analysis revealed high levels of adsorption of the TF-rPpolcp19k-his complex and of purified E. coli TF on both hydrophobic and hydrophilic surfaces, while low levels of adsorption were observed for rPpolcp19k-his. Tag-free rPpolcp19k protein also exhibited low adsorption compared to fibrinogen and Cell-Tak controls on hydrophobic, neutral hydrophilic and charged self-assembled monolayers under surface plasmon resonance assay conditions designed to mimic the barnacle cement gland or seawater. Because rPpolcp19k protein displays low adhesive capability, this protein is suggested to confer the ability to self-assemble into a plaque within the barnacle cement complex. This article is part of the theme issue Transdisciplinary approaches to the study of adhesion and adhesives in biological systems.
  •  
5.
  • Wibisono, Yusuf, et al. (author)
  • Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: A novel platform for eco-friendly biofouling mitigation
  • 2015
  • In: Water Research. - : Elsevier / IWA Publishing. - 0043-1354 .- 1879-2448. ; 71, s. 171-186
  • Journal article (peer-reviewed)abstract
    • Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG(10)MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view