SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Elfving Hedvig) srt2:(2021)"

Search: WFRF:(Elfving Hedvig) > (2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Backman, Max, et al. (author)
  • Infiltration of NK and plasma cells is associated with a distinct immune subset in non‐small cell lung cancer
  • 2021
  • In: Journal of Pathology. - : John Wiley & Sons. - 0022-3417 .- 1096-9896. ; 255:3, s. 243-256
  • Journal article (peer-reviewed)abstract
    • Immune cells of the tumor microenvironment are central but erratic targets for immunotherapy. The aim of this study was to characterize novel patterns of immune cell infiltration in non-small cell lung cancer (NSCLC) in relation to its molecular and clinicopathologic characteristics. Lymphocytes (CD3+, CD4+, CD8+, CD20+, FOXP3+, CD45RO+), macrophages (CD163+), plasma cells (CD138+), NK cells (NKp46+), PD1+, and PD-L1+ were annotated on a tissue microarray including 357 NSCLC cases. Somatic mutations were analyzed by targeted sequencing for 82 genes and a tumor mutational load score was estimated. Transcriptomic immune patterns were established in 197 patients based on RNA sequencing data. The immune cell infiltration was variable and showed only poor association with specific mutations. The previously defined immune phenotypic patterns, desert, inflamed, and immune excluded, comprised 30, 13, and 57% of cases, respectively. Notably, mRNA immune activation and high estimated tumor mutational load were unique only for the inflamed pattern. However, in the unsupervised cluster analysis, including all immune cell markers, these conceptual patterns were only weakly reproduced. Instead, four immune classes were identified: (1) high immune cell infiltration, (2) high immune cell infiltration with abundance of CD20+ B cells, (3) low immune cell infiltration, and (4) a phenotype with an imprint of plasma cells and NK cells. This latter class was linked to better survival despite exhibiting low expression of immune response-related genes (e.g. CXCL9, GZMB, INFG, CTLA4). This compartment-specific immune cell analysis in the context of the molecular and clinical background of NSCLC reveals two previously unrecognized immune classes. A refined immune classification, including traits of the humoral and innate immune response, is important to define the immunogenic potency of NSCLC in the era of immunotherapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
  •  
2.
  • Elfving, Hedvig, et al. (author)
  • Evaluation of NTRK immunohistochemistry as a screening method for NTRK gene fusion detection in non-small cell lung cancer
  • 2021
  • In: Lung Cancer. - : Elsevier. - 0169-5002 .- 1872-8332. ; 151, s. 53-59
  • Journal article (peer-reviewed)abstract
    • Purpose: The small molecule inhibitors larotrectinib and entrectinib have recently been approved as cancer agnostic drugs in patients with tumours harbouring a rearrangement of the neurotrophic tropomyosin receptor kinase (NTRK). These oncogenic fusions are estimated to occur in 0.1-3 % of non-small cell lung cancers (NSCLC). Although molecular techniques are most reliable for fusion detection, immunohistochemical analysis is considered valuable for screening. Therefore, we evaluated the newly introduced diagnostic immunohistochemical assay (clone EPR17341) on a representative NSCLC cohort.Methods: Cancer tissue from 688 clinically and molecularly extensively annotated NSCLC patients were comprised on tissue microarrays and stained with the pan-TRK antibody clone EPR17341. Positive cases were further analysed with the TruSight Tumor 170 RNA assay (Illumina). Selected cases were also tested with a NanoString NTRK fusion assay. For 199 cases, NTRK RNA expression data were available from previous RNA sequencing analysis.Results: Altogether, staining patterns for 617 NSCLC cases were evaluable. Of these, four cases (0.6 %) demonstrated a strong diffuse cytoplasmic and membranous staining, and seven cases a moderate staining (1.1 %). NanoString or TST170-analysis could not confirm an NTRK fusion in any of the IHC positive cases, or any of the cases with high mRNA levels. In the four cases with strong staining intensity in the tissue microarray, whole section staining revealed marked heterogeneity of NTRK protein expression.Conclusion: The presence of NTRK fusion genes in non-small cell lung cancer is exceedingly rare. The use of the immunohistochemical NTRK assay will result in a small number of false positive cases. This should be considered when the assay is applied as a screening tool in clinical diagnostics.
  •  
3.
  • Goldmann, Torsten, et al. (author)
  • PD-L1 amplification is associated with an immune cell rich phenotype in squamous cell cancer of the lung
  • 2021
  • In: Cancer Immunology and Immunotherapy. - : Springer Nature. - 0340-7004 .- 1432-0851. ; 70:9, s. 2577-2587
  • Journal article (peer-reviewed)abstract
    • Gene amplification is considered to be one responsible cause for upregulation of Programmed Death Ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC) and to represent a specific molecular subgroup possibly associated with immunotherapy response. Our aim was to analyze the frequency of PD-L1 amplification, its relation to PD-L1 mRNA and protein expression, and to characterize the immune microenvironment of amplified cases. The study was based on two independent NSCLC cohorts, including 354 and 349 cases, respectively. Tissue microarrays were used to evaluate PD-L1 amplification by FISH and PD-L1 protein by immunohistochemistry. Immune infiltrates were characterized immunohistochemically by a panel of immune markers (CD3, CD4, CD8, PD-1, Foxp3, CD20, CD138, CD168, CD45RO, NKp46). Mutational status was determined by targeted sequencing. RNAseq data was available for 197 patients. PD-L1 amplification was detected in 4.5% of all evaluable cases. PD-L1 amplification correlated only weakly with mRNA and protein expression. About 37% of amplified cases were negative for PD-L1 protein. PD-L1 amplification did not show any association with the mutational status. In squamous cell cancer, PD-L1 amplified cases were enriched among patients with high tumoral immune cell infiltration and showed gene expression profiles related to immune exhaustion. In conclusion, PD-L1 amplification correlates with PD-L1 expression in squamous cell cancer and was associated with an immune cell rich tumor phenotype. The correlative findings help to understand the role of PD-L1 amplification as an important immune escape mechanism in NSCLC and suggest the need to further evaluate PD-L1 amplification as predictive biomarker for checkpoint inhibitor therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view