SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ferraro I.) srt2:(2015)"

Search: WFRF:(Ferraro I.) > (2015)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Moradi, I., et al. (author)
  • Intercalibration and Validation of Observations From ATMS and SAPHIR Microwave Sounders
  • 2015
  • In: IEEE Transactions on Geoscience and Remote Sensing. - : Institute of Electrical and Electronics Engineers (IEEE). - 0196-2892 .- 1558-0644. ; 53:11, s. 5915-5925
  • Journal article (peer-reviewed)abstract
    • This paper evaluates the radiometric accuracy of observations from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership and Sondeur Atmospherique du Profil d' Humidite Intropicale par Radiometrie (SAPHIR) onboard Megha-Tropiques through intercalibration and validation versus in situ radiosonde and Global Positioning System Radio Occultation (GPS-RO) observations. SAPHIR and ATMS water vapor channels operate at slightly different frequencies. We calculated the bias due to radiometric errors as the difference between the observed and simulated differences between the two instruments. This difference, which is often referred to as double difference, ranges between 0.3 and 0.7 K, which shows good consistency between the instruments. We used a radiative transfer model to simulate the satellite brightness temperatures (Tbs) using radiosonde and GPS-RO profiles and then compared simulated and observed Tbs. The difference between radiosonde and ATMS Tbs for the middle and upper tropospheric temperature sounding channels was less than 0.5 K at most stations, but the difference between radiosonde and ATMS/SAPHIR Tbs for water vapor channels was between 0.5 and 2.0 K. The larger bias for the water vapor channels is mainly due to several errors in radiosonde humidity observations. The mean differences between the ATMS observations and the Tbs simulated using GPS-RO profiles were 0.2, 0.3, 0.4, 0.2, and -0.2 K for channels 10-14, respectively; and the uncertainty increases from 0.02 K for channel 10 to 0.07 K for channel 14.
  •  
2.
  • Moradi, I., et al. (author)
  • Retrieving Layer-Averaged Tropospheric Humidity from Advanced Technology Microwave Sounder Water Vapor Channels
  • 2015
  • In: IEEE Transactions on Geoscience and Remote Sensing. - 0196-2892 .- 1558-0644. ; 53:12, s. 6675-6688
  • Journal article (peer-reviewed)abstract
    • A method is presented to calculate layer-averaged tropospheric humidity (LAH) from the observations of the Advanced Technology Microwave Sounder (ATMS) water vapor channels. The method is based on a linear relation between the satellite brightness temperatures (Tb) and natural logarithm of Jacobian weighted humidity. The empirical coefficients of this linear relation were calculated using different data sets, as well as a fast and a line-by-line radiative transfer (RT) model. It was found that the coefficients do not significantly depend on the data set or the RT model. This Tb to the LAH transformation method can be applied to either original or limb-corrected ATMS Tb's. The method was validated using both simulated and observed ATMS Tb's. The systematic difference between the estimated and calculated LAH values was less than 10% in most cases. We also tested the transformation method using a fixed Jacobian for each channel. The bias generally increases when fixed Jacobians are used, but there is still a satisfactory agreement between estimated and calculated LAH values. In addition, the spatial distribution of the bias was investigated using the European Center for Medium-Range Weather Forecasting (ECMWF) Interim Reanalysis (ERA-interim) and collocated ATMS observations. The bias did not indicate any significant regional dependence when actual Jacobians were used, but in the case of fixed Jacobians, the bias generally increased from middle latitude toward the poles.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view