SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Filipek Górniok Beata) srt2:(2011-2014)"

Search: WFRF:(Filipek Górniok Beata) > (2011-2014)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Filipek-Gorniok, Beata, et al. (author)
  • Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development
  • 2013
  • In: Developmental Dynamics. - : Wiley. - 1058-8388 .- 1097-0177. ; 242:8, s. 964-975
  • Journal article (peer-reviewed)abstract
    • Background: Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions. Results: Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf, is represented by two copies in the zebrafish genome, chpfa and chpfb, while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues. The putative zebrafish CS/DS glycosyltransferases are spatially and temporally expressed. Interestingly, overlapping expression of multiple glycosyltransferases coincides with high CS/DS deposition. Finally, whereas the relative levels of the related polysaccharide HS reach steady-state at around 2 days post fertilization, there is a continued relative increase of the CS amounts per larvae during the first 6 days of development, matching the increased cartilage formation. Conclusions: There are 7 CS/DS glycosyltransferases in zebrafish, which, based on homology, can be divided into the CSGALNACT, CHSY, and CHPF families. The overlap between intense CS/DS production and the expression of multiple CS/DS glycosyltransferases suggests that efficient CS/DS biosynthesis requires a combination of several glycosyltransferases.
  •  
2.
  • Fischer, Sabine, et al. (author)
  • Zebrafish Ext2 is necessary for Fgf and Wnt signaling, but not for Hh signaling
  • 2011
  • In: BMC Developmental Biology. - 1471-213X. ; 11, s. 53-
  • Journal article (peer-reviewed)abstract
    • Background: Heparan sulfate (HS) biosynthesis is tightly regulated during vertebrate embryo development. However, potential roles for HS biosynthesis in regulating the function of paracrine signaling molecules that bind to HS are incompletely understood.Results: In this report we have studied Fgf, Wnt and Hedgehog (Hh) signaling in ext2 mutants, where heparan sulfate content is low. We found that Fgf targeted gene expression is reduced in ext2 mutants and that the remaining expression is readily inhibited by SU5402, an FGF receptor inhibitor. In the ext2 mutants, Fgf signaling is shown to be affected during nervous system development and reduction of Fgf ligands in the mutants affects tail development. Also, Wnt signaling is affected in the ext2 mutants, as shown by a stronger phenotype in ext2 mutants injected with morpholinos that partially block translation of Wnt11 or Wnt5b, compared to injected wild type embryos. In contrast, Hh dependent signaling is apparently unaffected in the ext2 mutants; Hh targeted gene expression is not reduced, the Hh inhibitor cyclopamine is not more affective in the mutants and Hh dependent cell differentiation in the retina and in the myotome are normal in ext2 mutants. In addition, no genetic interaction between ext2 and shha during development could be detected.Conclusion: We conclude that ext2 is involved in Fgf and Wnt signaling but not in Hh signaling, revealing an unexpected specificity for ext2 in signaling pathways during embryonic development. Thus, our results support the hypothesis that regulation of heparan sulfate biosynthesis has distinct instructive functions for different signaling factors.
  •  
3.
  • Holmborn, Katarina, et al. (author)
  • On the Roles and Regulation of Chondroitin Sulfate and Heparan Sulfate in Zebrafish Pharyngeal Cartilage Morphogenesis
  • 2012
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 287:40, s. 33905-33916
  • Journal article (peer-reviewed)abstract
    • The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation of the common proteoglycan linkage tetrasaccharide were analyzed along with ext2 and extl3 mutants, predicted to have defective HS polymerization. Notably, the effects on HS and CS biosynthesis in the respective mutant strains were shown to differ from what had been hypothesized. In uxs1 and b3gat3 mutant larvae, biosynthesis of CS was shown to be virtually abolished, whereas these mutants still were capable of synthesizing 50% of the HS produced in control larvae. extl3 and ext2 mutants on the other hand were shown to synthesize reduced amounts of hypersulfated HS. Further, extl3 mutants produced higher levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies in the single mutant strains, as well as in ext2;uxs1 double mutants, was conducted. A correlation between HS and CS production and phenotypes was found, such that impaired HS biosynthesis was shown to affect chondrocyte intercalation, whereas impaired CS biosynthesis inhibited formation of the extracellular matrix surrounding chondrocytes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view