SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fridberger Anders) srt2:(2000-2004)"

Search: WFRF:(Fridberger Anders) > (2000-2004)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Duan, Maoli, et al. (author)
  • Imaging of the guinea pig cochlea following round window gadolinium application
  • 2004
  • In: NeuroReport. - : Wolters Kluwer. - 0959-4965 .- 1473-558X. ; 15:12, s. 1927-1930
  • Journal article (peer-reviewed)abstract
    • Precise, non-invasive determination of the aetiology and site of pathology of inner ear disorders is difficult. The aim of this study was to describe an alternative method for inner ear visualization, based on local application of the paramagnetic contrast agent gadolinium. Using a 4.7 T MRI scanner, high contrast images of all four cochlear turns were obtained 3.5 h after placing gadolinium on the round window membrane. Gadolinium cleared from the cochlea within 96 h. Auditory brainstem response measurements performed on a separate group of animals showed no significant threshold shifts after the application, indicating that gadolinium is non-toxic to the guinea pig cochlea.
  •  
2.
  • Fridberger, Anders, 1966-, et al. (author)
  • Alterations of basilar membrane response phase and velocity after acoustic overstimulation
  • 2002
  • In: Hearing Research. - : Elsevier. - 0378-5955 .- 1878-5891. ; 167:1-2, s. 214-222
  • Journal article (peer-reviewed)abstract
    • To investigate the physiology of noise-induced hearing loss, the sound-induced vibrations of the basilar membrane (BM) of the inner ear were measured in living anesthetized guinea pigs before and after intense sound exposure. The vibrations were measured using a laser Doppler velocimeter after placing reflective glass beads on the BM. Pseudo-random noise waveforms containing frequencies between 4 and 24 kHz were used to generate velocity tuning curves. Before overstimulation, sharp response peaks were seen at stimulus frequencies between 15 and 17 kHz, consistent with the expected best frequency of the recording location. The response to low level stimuli lagged the high level ones by up to 90 degrees at the characteristic frequency. Following exposure to loud sound, the BM vibrations showed a pronounced reduction in amplitude, primarily at low stimulus levels, and the best frequency moved to approximately 12 kHz. At higher levels, the reduction was either absent or much smaller. In addition to the amplitude changes, increased phase lags were seen at frequencies near the characteristic frequency. In animals with more severe exposures, response phases were altered also at frequencies showing no change of the amplitude. The phase was independent of stimulus level after severe exposures.
  •  
3.
  • Fridberger, Anders, 1966-, et al. (author)
  • Internal shearing within the hearing organ evoked by basilar membrane motion
  • 2002
  • In: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 22:22, s. 9850-9857
  • Journal article (peer-reviewed)abstract
    • The vibration of the hearing organ that occurs during sound stimulation is based on mechanical interactions between different cellular structures inside the organ of Corti. The exact nature of these interactions is unclear and subject to debate. In this study, dynamic structural changes were produced by stepwise alterations of scala tympani pressure in an in vitro preparation of the guinea pig temporal bone. Confocal images were acquired at each level of pressure. In this way, the motion of several structures could be observed simultaneously with high resolution in a nearly intact system. Images were analyzed using a novel wavelet-based optical flow estimation algorithm. Under these conditions, the reticular lamina moved as a stiff plate with a center of rotation in the region of the inner hair cells. Despite being enclosed in several types of supporting cells, the inner hair cells, together with the adjacent inner pillar cells, moved in a manner signifying high compliance. The outer hair cells displayed radial motion indicative of cellular bending. Together, these results show that shearing motion occurs between several parts of the organ, and that structural relationships within the organ change dynamically during displacement of the basilar membrane.
  •  
4.
  • Fridberger, Anders, 1966-, et al. (author)
  • Loud sound-induced changes in cochlear mechanics
  • 2002
  • In: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 88:5, s. 2341-2348
  • Journal article (peer-reviewed)abstract
    • To investigate the inner ear response to intense sound and the mechanisms behind temporary threshold shifts, anesthetized guinea pigs were exposed to tones at 100-112 dB SPL. Basilar membrane vibration was measured using laser velocimetry, and the cochlear microphonic potential, compound action potential of the auditory nerve, and local electric AC potentials in the organ of Corti were used as additional indicators of cochlear function. After exposure to a 12-kHz intense tone, basilar membrane vibrations in response to probe tones at the characteristic frequency of the recording location (17 kHz) were transiently reduced. This reduction recovered over the course of 50 ms in most cases. Organ of Corti AC potentials were also reduced and recovered with a time course similar to the basilar membrane. When using a probe tone at either 1 or 4 kHz, organ of Corti AC potentials were unaffected by loud sound, indicating that transducer channels remained intact. In most experiments, both the basilar membrane and the cochlear microphonic response to the 12-kHz overstimulation was constant throughout the duration of the intense stimulus, despite a large loss of cochlear sensitivity. It is concluded that the reduction of basilar membrane velocity that followed loud sound was caused by changes in cochlear amplification and that the cochlear response to intense stimulation is determined by the passive mechanical properties of the inner ear structures.
  •  
5.
  • Fridberger, Anders, 1966-, et al. (author)
  • Measuring hearing organ vibration patterns with confocal microscopy and optical flow
  • 2004
  • In: Biophysical Journal. - : Cell Press. - 0006-3495 .- 1542-0086. ; 86:1, s. 535-543
  • Journal article (peer-reviewed)abstract
    • A new method for visualizing vibrating structures is described. The system provides a means to capture very fast repeating events by relatively minor modi. cations to a standard confocal microscope. An acousto-optic modulator was inserted in the beam path, generating brief pulses of laser light. Images were formed by summing consecutive frames until every pixel of the resulting image had been exposed to a laser pulse. Images were analyzed using a new method for optical flow computation; it was validated through introducing artificial displacements in confocal images. Displacements in the range of 0.8 to 4 pixels were measured with 5% error or better. The lower limit for reliable motion detection was 20% of the pixel size. These methods were used for investigating the motion pattern of the vibrating hearing organ. In contrast to standard theory, we show that the organ of Corti possesses several degrees of freedom during sound-evoked vibration. Outer hair cells showed motion indicative of deformation. After acoustic overstimulation, supporting cells contracted. This slowly developing structural change was visualized during simultaneous intense sound stimulation and its speed measured with the optical flow technique.
  •  
6.
  • Fridberger, Anders, 1966-, et al. (author)
  • Organ of Corti potentials and the motion of the basilar membrane
  • 2004
  • In: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 24:45, s. 10057-10063
  • Journal article (peer-reviewed)abstract
    • During sound stimulation, receptor potentials are generated within the sensory hair cells of the cochlea. Prevailing theory states that outer hair cells use the potential-sensitive motor protein prestin to convert receptor potentials into fast alterations of cellular length or stiffness that boost hearing sensitivity almost 1000-fold. However, receptor potentials are attenuated by the filter formed by the capacitance and resistance of the membrane of the cell. This attenuation would limit cellular motility at high stimulus frequencies, rendering the above scheme ineffective. Therefore, Dallos and Evans (1995a) proposed that extracellular potential changes within the organ of Corti could drive cellular motor proteins. These extracellular potentials are not filtered by the membrane. To test this theory, both electric potentials inside the organ of Corti and basilar membrane vibration were measured in response to acoustic stimulation. Vibrations were measured at sites very close to those interrogated by the recording electrode using laser interferometry. Close comparison of the measured electrical and mechanical tuning curves and time waveforms and their phase relationships revealed that those extracellular potentials indeed could drive outer hair cell motors. However, to achieve the sharp frequency tuning that characterizes the basilar membrane, additional mechanical processing must occur inside the organ of Corti.
  •  
7.
  • Fridberger, Anders, 1966-, et al. (author)
  • Sound-induced differential motion within the hearing organ
  • 2003
  • In: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 6:5, s. 446-448
  • Journal article (peer-reviewed)abstract
    • Hearing depends on the transformation of sound-induced basilar membrane vibration into deflection of stereocilia1 on the sensory hair cells, but the nature of these mechanical transformations is unclear. Using new techniques to visualize and measure sound-induced vibration deep inside the moving organ of Corti, we found that two functionally crucial structures, the basilar membrane and the reticular lamina, have different centers of rotation, leading to shearing motion and rapid deformation for the mechanoreceptive outer hair cells. Structural relations within the organ of Corti are much more dynamic than previously thought, which clarifies how outer hair cell molecular motors can have such a powerful effect.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view