SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Glaser C.) srt2:(2005-2009)"

Search: WFRF:(Glaser C.) > (2005-2009)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bruzzi, M, et al. (author)
  • Radiation-hard semiconductor detectors for SuperLHC
  • 2005
  • In: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 541:1-2, s. 189-201
  • Journal article (peer-reviewed)abstract
    • An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 1035 cm-2 s-1 has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 1016cm-2. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Float Zone silicon), the improvement of present detector designs and the understanding of the microscopic defects causing the degradation of the irradiated detectors. The latest advancements within the RD50 collaboration on radiation hard semiconductor detectors will be reviewed and discussed in this work.
  •  
2.
  •  
3.
  • Zeller, S, et al. (author)
  • Immunoglobulin-E-mediated reactivity to self antigens: a controversial issue
  • 2008
  • In: International archives of allergy and immunology. - : S. Karger AG. - 1423-0097 .- 1018-2438. ; 145:2, s. 87-93
  • Journal article (peer-reviewed)abstract
    • Immunoglobulin E (IgE) reactivity to self antigens is well established in vitro by ELISA, inhibition ELISA, Western blot analyses and T cell proliferation experiments. In vivo, IgE-binding self antigens are able to elicit strong type I reactions in sensitized individuals and, in the case of human manganese superoxide dismutase, to elicit eczematous reactions on healthy skin areas of patients suffering from atopic eczema. The reactions against self antigens sharing structural homology with environmental allergens can be plausibly explained by molecular mimicry between common B cell epitopes. For the second class of IgE-binding self antigens without sequence homology to known allergens, it is still unclear if the structures are able to induce a B cell switch to IgE production, or if the reactivity is due to sequence similarity shared with not yet detected environmental allergens. However, in all cases, cross-reactivity is never complete, indicating either a lower affinity of IgE antibodies to self allergens than to the homologous environmental allergens or the presence of additional B cell epitopes on the surface of the environmental allergens, or both. Increasing evidence shows that self allergens could play a decisive role in the exacerbation of long-lasting atopic diseases. However, the only observation supporting a clinical role of IgE-mediated autoreactivity is confined to the fact that IgE levels against self antigens correlate with disease severity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view