SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grogan Paul) srt2:(2016)"

Search: WFRF:(Grogan Paul) > (2016)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abbott, Benjamin W., et al. (author)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Journal article (peer-reviewed)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Semenchuk, Philipp R., et al. (author)
  • Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem
  • 2016
  • In: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 121:5, s. 1236-1248
  • Journal article (peer-reviewed)abstract
    • Tundra soils store large amounts of carbon (C) that could be released through enhanced ecosystem respiration (ER) as the arctic warms. Over time, this may change the quantity and quality of available soil C pools, which in-turn may feedback and regulate ER responses to climate warming. Therefore, short-term increases in ER rates due to experimental warming may not be sustained over longer periods, as observed in other studies. One important aspect, which is often overlooked, is how climatic changes affecting ER in one season may carry-over and determine ER in following seasons. Using snow fences, we increased snow depth and thereby winter soil temperatures in a high-arctic site in Svalbard (78 degrees N) and a low-arctic site in the Northwest Territories, Canada (64 degrees N), for 5 and 9years, respectively. Deepened snow enhanced winter ER while having negligible effect on growing-season soil temperatures and soil moisture. Growing-season ER at the high-arctic site was not affected by the snow treatment after 2years. However, surprisingly, the deepened snow treatments significantly reduced growing-season ER rates after 5years at the high-arctic site and after 8-9years at the low-arctic site. We speculate that the reduction in ER rates, that became apparent only after several years of experimental manipulation, may, at least in part, be due to prolonged depletion of labile C substrate as a result of warmer soils over multiple cold seasons. Long-term changes in winter climate may therefore significantly influence annual net C balance not just because of increased wintertime C loss but also because of legacy effects on ER rates during the following growing seasons.
  •  
3.
  • Tobin, Stephen, et al. (author)
  • Nondestructive Assay Data Integration with the SKB-50 Assemblies - FY16 Update
  • 2016
  • Reports (other academic/artistic)abstract
    • A project to research the application of non-destructive assay (NDA) techniques for spent fuel assemblies is underway at the Central Interim Storage Facility for Spent Nuclear Fuel (for which the Swedish acronym is Clab) in Oskarshamn, Sweden. The research goals of this project contain both safeguards and non-safeguards interests. These nondestructive assay (NDA) technologies are designed to strengthen the technical toolkit of safeguard inspectors and others to determine the following technical goals more accurately; Verify initial enrichment, burnup, and cooling time of facility declaration for spent fuel assemblies; Detect replaced or missing pins from a given spent fuel assembly to confirm its integrity; and Estimate plutonium mass and related plutonium and uranium fissile mass parameters in spent fuel assemblies. Estimate heat content, and measure reactivity (multiplication).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3
Type of publication
journal article (2)
reports (1)
Type of content
peer-reviewed (2)
other academic/artistic (1)
Author/Editor
Grogan, Paul (2)
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
show more...
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
Guo, Laodong (1)
show less...
University
Umeå University (2)
Uppsala University (2)
University of Gothenburg (1)
Stockholm University (1)
Swedish University of Agricultural Sciences (1)
Language
English (3)
Research subject (UKÄ/SCB)
Natural sciences (3)
Agricultural Sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view