SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hejral Uta 1984) srt2:(2018)"

Search: WFRF:(Hejral Uta 1984) > (2018)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Martin, Natalia Mihaela, 1984, et al. (author)
  • Structure-function relationship during CO2 methanation over Rh/Al2O3 and Rh/SiO2 catalysts at atmospheric pressure conditions
  • 2018
  • In: Catalysis Science and Technology. - : Royal Society of Chemistry (RSC). - 2044-4753 .- 2044-4761. ; 8:10, s. 2686-2696
  • Journal article (peer-reviewed)abstract
    • The effect of support material and chemical state of Rh for Rh/Al2O3 and Rh/SiO2 model catalysts during CO2 hydrogenation were studied by a combined array of in situ characterisation techniques including diffuse reflectance infrared Fourier transform spectroscopy, energy-dispersive X-ray absorption spectroscopy and high-energy X-ray diffraction at 250-350 °C and atmospheric pressure. The CO2 methanation proceeds via intermediate formation of adsorbed CO species on metallic Rh likely followed by their hydrogenation to methane. Linearly-bonded CO species is suggested to be a more active precursor in the hydrogenation compared to the bridge-bonded species, which seems to relate to particle size effects: for larger particles mainly the formation of inactive bridge-bonded CO species takes place. Further, analysis of the chemical state of Rh during reaction conditions reveal a minor formation of RhOx from dissociation of CO2 , which is a consequence of the increased activity observed over Rh/Al2O3 catalyst.
  •  
2.
  • Blomberg, Sara, et al. (author)
  • Combining synchrotron light with laser technology in catalysis research
  • 2018
  • In: Journal of Synchrotron Radiation. - 1600-5775 .- 0909-0495. ; 25:5, s. 1389-1394
  • Journal article (peer-reviewed)abstract
    • High-energy surface X-ray diffraction (HESXRD) provides surface structural information with high temporal resolution, facilitating the understanding of the surface dynamics and structure of the active phase of catalytic surfaces. The surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface, and the catalytic activity of the sample itself may affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, planar laser-induced fluorescence (PLIF) and HESXRD have been combined during the oxidation of CO over a Pd(100) crystal. PLIF complements the structural studies with an instantaneous two-dimensional image of the CO2 gas phase in the vicinity of the active model catalyst. Here the combined HESXRD and PLIF operandomeasurements of CO oxidation over Pd(100) are presented, allowing for an improved assignment of the correlation between sample structure and the CO2distribution above the sample surface with sub-second time resolution.
  •  
3.
  • Mehar, Vikram, et al. (author)
  • Understanding the Intrinsic Surface Reactivity of Single-Layer and Multilayer PdO(101) on Pd(100)
  • 2018
  • In: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 8:9, s. 8553-8567
  • Journal article (peer-reviewed)abstract
    • We investigated the intrinsic reactivity of CO on single-layer and multilayer PdO(101) grown on Pd(100) using temperature-programmed reaction spectroscopy (TPRS) and reflection absorption infrared spectroscopy (RAIRS) experiments, as well as density functional theory (DFT) calculations. We find that CO binds more strongly on multilayer than single-layer PdO(101) (∼119 kJ/mol vs 43 kJ/mol), and that CO oxidizes negligibly on single-layer PdO(101), whereas nearly 90% of a saturated layer of CO oxidizes on multilayer PdO(101) during TPRS experiments. RAIRS further shows that CO molecules adsorb on both bridge-Pdcusand atop-Pdcussites (coordinatively unsaturated Pd sites) of single-layer PdO(101)/Pd(100), while CO binds exclusively on atop-Pdcussites of multilayer PdO(101). The DFT calculations reproduce the much stronger binding of CO on multilayer PdO(101), as well as the observed binding site preferences, and reveal that the stronger binding is entirely responsible for the higher CO oxidation activity of multilayer PdO(101)/Pd(100). We show that the O atom below the Pdcussite, present only on multilayer PdO(101), modifies the electronic states of the Pdcusatom in a way that enhances the CO-Pdcusbonding. Lastly, we show that a precursor-mediated kinetic model, with energetics determined from the present study, predicts that the intrinsic CO oxidation rates achieved on both single-layer and multilayer PdO(101)/Pd(100) can be expected to exceed the gaseous CO diffusion rate to the surface during steady-state CO oxidation at elevated pressures, even though the intrinsic reaction rates are 4-5 orders of magnitude lower on single-layer PdO(101)/Pd(100) than on multilayer PdO(101)/Pd(100).
  •  
4.
  • Schaefer, Andreas, 1981, et al. (author)
  • Thermal reduction of ceria nanostructures on rhodium(111) and re-oxidation by CO2
  • 2018
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 20:29, s. 19447-19457
  • Journal article (peer-reviewed)abstract
    • The thermal reduction of cerium oxide nanostructures deposited on a rhodium(111) single crystal surface and the re-oxidation of the structures by exposure to CO2 were investigated. Two samples are compared: a rhodium surface covered to ≈60% by one to two O-Ce-O trilayer high islands and a surface covered to ≈65% by islands of four O-Ce-O trilayer thickness. Two main results stand out: (1) the thin islands reduce at a lower temperature (870-890 K) and very close to Ce2O3, while the thicker islands need higher temperature for reduction and only reduce to about CeO1.63 at a maximum temperature of 920 K. (2) Ceria is re-oxidized by CO2. The rhodium surface promotes the re-oxidation by splitting the CO2 and thus providing atomic oxygen. The process shows a clear temperature dependence. The maximum oxidation state of the oxide reached by re-oxidation with CO2 differs for the two samples, showing that the thinner structures require a higher temperature for re-oxidation with CO2. Adsorbed carbon species, potentially blocking reactive sites, desorb from both samples at the same temperature and cannot be the sole origin for the observed differences. Instead, an intrinsic property of the differently sized CeOx islands must be at the origin of the observed temperature dependence of the re-oxidation by CO2.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view