SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hilgendorf Constanze) srt2:(2010-2014)"

Search: WFRF:(Hilgendorf Constanze) > (2010-2014)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Desbans, Coraline, et al. (author)
  • Accurate prediction of variability in CLint and Fm via 3A4 is only obtained by assessing a series of individual cryopreserved human hepatocyte batches
  • 2010
  • In: Drug metabolism reviews (Softcover ed.). - New York : Informa Healthcare. - 0360-2532 .- 1097-9883. ; 42:Suppl. 1, s. 274-274
  • Journal article (peer-reviewed)abstract
    • Multiple in-vitro and in-vivo methods are currently assessed and under discussion to predict human clearance and pharmacokinetics from preclinical studies. A combination of high fm with a high fraction metabolism via a single pathway, e.g. via CYP3A4 (fmCYP3A4), has been recognized as a high risk factor for Drug Drug Interactions (DDI) in the clinical setting[1],[2],[3],[4] . Thus, an early predictive tool to allow for appropriate modeling of this potential risk for DDI is highly warranted. Hepatocytes, capable of both phase I and phase II reactions, are an attractive system to study fraction metabolized (fm) via a single pathway. In the present study, intrinsic clearance (CLint) was determined in cryopreserved human hepatocytes in suspension for a set of five compounds with known and variable fm via CYP3A4 (amitriptyline, loratadine, methylprednisolone, midazolam, and tacrolimus) in the absence or presence of ketoconazole. In order to get an insight into the influence of inter-individual variability, twelve batches of cryopreserved human hepatocytes with either high, moderate or low CYP3A4-dependent activity towards midazolam (MDZ) were chosen. Clint values were determined as substrate depletion under shaking conditions (900rpm) using an elliptic shaker as previously reported[5]. For all compounds, the mean CLint for individual donors in absence of ketoconazole correlated very well with literature data on the mean of individual donors1,2,3, and/or pools of donors5. Average fmCYP3A4 for midazolam was 83%, tacrolimus 64%, methylprednisolone 55%, amitriptyline 28%, and loratadine 19% are also well within the literature data2,3,4. Interestingly, the results obtained for a homogenous subpopulation regarding MDZ CLint and percent inhibition by ketoconazole, were not directly related to the ketoconazole sensitive CLint for the other CYP3A4 substrates tested. The variability in CYP3A4 contribution for compounds having multiple metabolic pathways cannot be predicted by the fm3A4 for MDZ. This suggests that an overall prediction of CLint or fm via CYP3A4 for compounds partially metabolized by this enzyme is not possible. Thus, the individual differences in CLint for a given compound and fmCYPi can only be well covered by assessing a series of individual cryopreserved human hepatocyte batches.[1] Lu, C., Miwa, G. T., Prakash, S. R., Gan, L-S. and Balani, S. K. (2007), Drug Metabolism And Disposition, 35: 1, 79–85[2] Lu, C., Hatsis,P., Berg,C., Lee, F. W. and Balani, S. K. (2008), Drug Metabolism And Disposition, 36: 7, 1255–1260[3] Lu, C., Hatsis,P., Berg,C., Lee, F. W. and Balani, S. K. (2008), Drug Metabolism And Disposition, 36: 7, 1261–1266[4] Emoto, C., Murase, S. and Iwasaki, K.(2006), Xenobiotica, 36: 8, 671 — 683[5] Simon ,S., Blanchard, N., Alexandre, E., Hewitt, N. J., Bachellier, P., Heyd, B., Coassolo, P., Schuler, F., Richert, L., (2009) ‘MV-HUF Copenhagen’
  •  
2.
  •  
3.
  • Karlsson, Fredrik, 1984, et al. (author)
  • Utility of in vitro systems and preclinical data for the prediction of human intestinal first-pass metabolism during drug discovery and preclinical development
  • 2013
  • In: Drug Metabolism and Disposition. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 1521-009X .- 0090-9556. ; 41:12, s. 2033-2046
  • Journal article (peer-reviewed)abstract
    • A growing awareness of the risks associated with extensive intestinal metabolism has triggered an interest in developing robust methods for its quantitative assessment. This study explored the utility of intestinal S9 fractions, human liver microsomes, and recombinant cytochromes P450 to quantify CYP3A-mediated intestinal extraction in humans for a selection of marketed drugs that are predominantly metabolized by CYP3A4. A simple competing rates model is used to estimate the fraction of drug escaping gut wall metabolism (f g ) from in vitro intrinsic clearance in humans. The f g values extrapolated from the three in vitro systems used in this study, together with literature-derived f g from human intestinal microsomes, were validated against f g extracted from human in vivo pharmacokinetic (PK) profiles using a generic whole-body physiologically-based pharmacokinetic (PBPK) model. The utility of the rat as a model for human CYP3A-mediated intestinal meta bolism was also evaluated. Human f g from PBPK compares well with that from the grapefruit juice method, justifying its use for the evaluation of human in vitro systems. Predictive performance of all human in vitro systems was comparable [root mean square error (RMSE) = 0.22-0.27; n = 10]. Rat f g derived from in vivo PK profiles using PBPK has the lowest RMSE (0.19; n = 11) for the prediction of human f g for the selected compounds, most of which have a fraction absorbed close to 1. On the basis of these evaluations, the combined use of f g from human in vitro systems and rats is recommended for the estimation of CYP3A4-mediated intestinal metabolism in lead optimization and preclinical development phases.
  •  
4.
  • Over, Bjorn, et al. (author)
  • Impact of Stereospecific Intramolecular Hydrogen Bonding on Cell Permeability and Physicochemical Properties
  • 2014
  • In: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 57:6, s. 2746-2754
  • Journal article (peer-reviewed)abstract
    • Profiling of eight stereoisomeric T. cruzi growth inhibitors revealed vastly different in vitro properties such as solubility, lipophilicity, pK(a), and cell permeability for two sets of four stereoisomers. Using computational chemistry and NMR spectroscopy, we identified the formation of an intramolecular NH -> NR3 hydrogen bond in the set of stereoisomers displaying lower solubility, higher lipophilicity, and higher cell permeability. The intramolecular hydrogen bond resulted in a significant pKa difference that accounts for the other structure property relationships. Application of this knowledge could be of particular value to maintain the delicate balance of size, solubility, and lipophilicity required for cell penetration and oral administration for chemical probes or therapeutics with properties at, or beyond, Lipinski's rule of 5.
  •  
5.
  • Schophuizen, Carolien M. S., et al. (author)
  • Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter
  • 2013
  • In: Pflügers Archiv. - : Springer Science and Business Media LLC. - 0031-6768. ; 465:12, s. 1701-1714
  • Journal article (peer-reviewed)abstract
    • Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 +/- 2 mu M). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 mu M ASP(+), which demonstrated competitive or mixed type of interaction (K (i) = 93 +/- 16 mu M). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view