SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Janda M.) srt2:(2017)"

Search: WFRF:(Janda M.) > (2017)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Globisch, Daniel, et al. (author)
  • Validation of onchocerciasis biomarker N-acetyltyramine-O-glucuronide (NATOG)
  • 2017
  • In: Bioorganic & Medicinal Chemistry Letters. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0960-894X .- 1464-3405. ; 27:15, s. 3436-3440
  • Journal article (peer-reviewed)abstract
    • The Neglected Tropical Disease onchocerciasis is a parasitic disease. Despite many control programmes by the World Health Organization (WHO), large communities in West and Central Africa are still affected. Besides logistic challenges during biannual mass drug administration, the lack of a robust, point-of-care diagnostic is limiting successful eradication of onchocerciasis. Towards the implementation of a non-invasive and point-of-care diagnostic, we have recently reported the discovery of the biomarker N-acetyltyramine-O-glucuronide (NATOG) in human urine samples using a metabolomics-mining approach. NATOG's biomarker value was enhanced during an investigation in a rodent model. Herein, we further detail the specificity of NATOG in active onchocerciasis infections as well as the co-infecting parasites Loa loa and Mansonella perstans. Our results measured by liquid chromatography coupled with mass spectrometry (LC-MS) reveal elevated NATOG values in mono-and co-infection samples only in the presence of the nematode Onchocerca volvulus. Metabolic pathway investigation of L-tyrosine/tyramine in all investigated nematodes uncovered an important link between the endosymbiotic bacterium Wolbachia and O. volvulus for the biosynthesis of NATOG. Based on these extended studies, we suggest NATOG as a biomarker for tracking active onchocerciasis infections and provide a threshold concentration value of NATOG for future diagnostic tool development.
  •  
2.
  • Kavan, Ladislav, et al. (author)
  • Novel highly active Pt/graphene catalyst for cathodes of Cu(II/I)-mediated dye-sensitized solar cells
  • 2017
  • In: Electrochimica Acta. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0013-4686 .- 1873-3859. ; 251, s. 167-175
  • Journal article (peer-reviewed)abstract
    • Novel highly active, optically-transparent electrode catalyst containing Pt, PtOx, graphene oxide and stacked graphene platelet nanofibers is developed for a cathode of Cu(II/I)-mediated dye-sensitized solar cells. The catalyst layer is deposited on a FTO substrate, which thus becomes smoother than the parent FTO, but the button-like Pt/PtOx nanoparticles are still distinguishable. The found electrocatalytic activity for the Cu(tmby)(2)(2+/+) redox couple (tmby is 4,4', 6,6'-tetramethyl-2,2'-bipyridine) is outperforming that of alternative catalysts, such as PEDOT or platinum. Exchange current densities exceeding 20 mA/cm(2) are provided exclusively by our novel catalyst. The synergic boosting of electrocatalytic activity is seen, if we normalize it to the catalytic performance of individual components, i.e. Pt and graphene nanofibers. The outstanding properties of our cathode are reflected by the performance of the corresponding solar cells using the Y123-sensitized titania photoanode. Champion solar-conversion efficiency (11.3% at 0.1 sun) together with a fill factor of 0.783 compare favorably to all other so far reported best values for this kind of solar cells and the given experimental conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view