SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kovac M.) srt2:(2020-2024)"

Search: WFRF:(Kovac M.) > (2020-2024)

  • Result 1-12 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Potapov, Anton M., et al. (author)
  • Global fine-resolution data on springtail abundance and community structure
  • 2024
  • In: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.
  •  
4.
  • Abazajian, Kevork, et al. (author)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Journal article (peer-reviewed)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
5.
  • Potapov, Anton M., et al. (author)
  • Globally invariant metabolism but density-diversity mismatch in springtails
  • 2023
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
  •  
6.
  • Pruner, I, et al. (author)
  • The Silence Speaks, but We Do Not Listen: Synonymous c.1824C>T Gene Variant in the Last Exon of the Prothrombin Gene as a New Prothrombotic Risk Factor
  • 2020
  • In: Clinical chemistry. - : Oxford University Press (OUP). - 1530-8561 .- 0009-9147. ; 66:2, s. 379-389
  • Journal article (peer-reviewed)abstract
    • BackgroundThrombosis is a major global disease burden with almost 60% of cases related to underlying heredity and most cases still idiopathic. Synonymous single nucleotide polymorphisms (sSNPs) are considered silent and phenotypically neutral. Our previous study revealed a novel synonymous FII c.1824C&gt;T variant as a potential risk factor for pregnancy loss, but it has not yet been associated with thrombotic diseases.MethodsTo determine the frequency of the FII c.1824C&gt;T variant we have sequenced patients’ DNA. Prothrombin RNA expression was measured by quantitative PCR. Functional analyses included routine hemostasis tests, western blotting and ELISA to determine prothrombin levels in plasma, and global hemostasis assays for thrombin and fibrin generation in carriers of the FII c.1824C&gt;T variant. Scanning electron microscopy was used to examine the structure of fibrin clots.ResultsFrequency of the FII c.1824C&gt;T variant was significantly increased in patients with venous thromboembolism and cerebrovascular insult. Examination in vitro demonstrated increased expression of prothrombin mRNA in FII c.1824T transfected cells. Our ex vivo study of FII c.1824C&gt;T carriers showed that the presence of this variant was associated with hyperprothrombinemia, hypofibrinolysis, and formation of densely packed fibrin clots resistant to fibrinolysis.ConclusionOur data indicate that FII c.1824C&gt;T, although a synonymous variant, leads to the development of a prothrombotic phenotype and could represent a new prothrombotic risk factor. As a silent variant, FII c.1824C&gt;T would probably be overlooked during genetic screening, and our results show that it could not be detected in routine laboratory tests.
  •  
7.
  • Chung, Taejung, et al. (author)
  • Comparison of the performance of multiple whole-genome sequence-based tools for the identification of Bacillus cereus sensu stricto biovar Thuringiensis
  • 2024
  • In: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 90:4
  • Journal article (peer-reviewed)abstract
    • The Bacillus cereus sensu stricto (s.s.) species comprises strains of biovar Thuringiensis (Bt) known for their bioinsecticidal activity, as well as strains with foodborne pathogenic potential. Bt strains are identified (i) based on the production of insecticidal crystal proteins, also known as Bt toxins, or (ii) based on the presence of cry, cyt, and vip genes, which encode Bt toxins. Multiple bioinformatics tools have been developed for the detection of crystal protein-encoding genes based on whole-genome sequencing (WGS) data. However, the performance of these tools is yet to be evaluated using phenotypic data. Thus, the goal of this study was to assess the performance of four bioinformatics tools for the detection of crystal protein-encoding genes. The accuracy of sequence-based identification of Bt was determined in reference to phenotypic microscope-based screening for the production of crystal proteins. A total of 58 diverse B. cereus sensu lato strains isolated from clinical, food, environmental, and commercial biopesticide products underwent WGS. Isolates were examined for crystal protein production using phase contrast microscopy. Crystal protein-encoding genes were detected using BtToxin_Digger, BTyper3, IDOPS (identification of pesticidal sequences), and Cry_processor. Out of 58 isolates, the phenotypic production of crystal proteins was confirmed for 18 isolates. Specificity and sensitivity of Bt identification based on sequences were 0.85 and 0.94 for BtToxin_Digger, 0.97 and 0.89 for BTyper3, 0.95 and 0.94 for IDOPS, and 0.88 and 1.00 for Cry_processor, respectively. Cry_processor predicted crystal protein production with the highest specificity, and BtToxin_Digger and IDOPS predicted crystal protein production with the highest sensitivity. Three out of four tested bioinformatics tools performed well overall, with IDOPS achieving high sensitivity and specificity (>0.90).IMPORTANCEStrains of Bacillus cereus sensu stricto (s.s.) biovar Thuringiensis (Bt) are used as organic biopesticides. Bt is differentiated from the foodborne pathogen Bacillus cereus s.s. by the production of insecticidal crystal proteins. Thus, reliable genomic identification of biovar Thuringiensis is necessary to ensure food safety and facilitate risk assessment. This study assessed the accuracy of whole-genome sequencing (WGS)-based identification of Bt compared to phenotypic microscopy-based screening for crystal protein production. Multiple bioinformatics tools were compared to assess their performance in predicting crystal protein production. Among them, identification of pesticidal sequences performed best overall at WGS-based Bt identification.
  •  
8.
  • Franic, Iva, et al. (author)
  • Climate, host and geography shape insect and fungal communities of trees
  • 2023
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.
  •  
9.
  • Franic, Iva, et al. (author)
  • Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs
  • 2022
  • In: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 9:1
  • Journal article (peer-reviewed)abstract
    • International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees.
  •  
10.
  • Kovac, E., et al. (author)
  • Association of Baseline Prostate-Specific Antigen Level With Long-term Diagnosis of Clinically Significant Prostate Cancer Among Patients Aged 55 to 60 Years: A Secondary Analysis of a Cohort in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial
  • 2020
  • In: JAMA network open. - : American Medical Association (AMA). - 2574-3805. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Importance: The use of prostate-specific antigen (PSA) screening for prostate cancer is controversial because of the risk of overdiagnosis and overtreatment of indolent cancers. Optimal screening strategies are highly sought. Objective: To estimate the long-term risk of any prostate cancer and clinically significant prostate cancer based on baseline PSA levels among men aged 55 to 60 years. Design, Setting, and Participants: This secondary analysis of a cohort in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial uses actuarial analysis to analyze the association of baseline PSA levels with long-term risk of any prostate cancer and of clinically significant prostate cancer among men aged 55 to 60 years enrolled in the screening group of the trial between 1993 and 2001. Exposure: Single PSA measurement at study entry. Main Outcomes and Measures: Long-term risk of any prostate cancer and clinically significant prostate cancer diagnoses. Results: There were 10968 men aged 55 to 60 years (median [interquartile range] age, 57 [55-58] years) at study enrollment in the screening group of the PLCO Cancer Screening Trial who had long-term follow-up. Actuarial 13-year incidences of clinically significant prostate cancer diagnosis among participants with a baseline PSA of 0.49 ng/mL or less was 0.4% (95% CI, 0%-0.8%); 0.50-0.99 ng/mL, 1.5% (95% CI, 1.1%-1.9%); 1.00-1.99 ng/mL, 5.4% (95% CI, 4.4%-6.4%); 2.00-2.99 ng/mL, 10.6% (95% CI, 8.3%-12.9%); 3.00-3.99 ng/mL, 15.3% (95% CI, 11.4%-19.2%); and 4.00 ng/mL and greater, 29.5% (95% CI, 24.2%-34.8%) (all pairwise log-rank P≤.004). Only 15 prostate cancer-specific deaths occurred during 13 years of follow-up, and 9 (60.0%) were among men with a baseline PSA level of 2.00 ng/mL or higher. Conclusions and Relevance: In this secondary analysis of a cohort from the PLCO Cancer Screening Trial, baseline PSA levels among men aged 55 to 60 years were associated with long-term risk of clinically significant prostate cancer. These findings suggest that repeated screening can be less frequent among men aged 55 to 60 years with a low baseline PSA level (ie, <2.00 ng/mL) and possibly discontinued among those with baseline PSA levels of less than 1.00 ng/mL.
  •  
11.
  •  
12.
  • Saba, Karim H., et al. (author)
  • Loss of NF2 defines a genetic subgroup of non-FOS-rearranged osteoblastoma
  • 2020
  • In: Journal of Pathology: Clinical Research. - : Wiley. - 2056-4538. ; 6:4, s. 231-237
  • Journal article (peer-reviewed)abstract
    • Osteoblastoma is a locally aggressive tumour of bone. Until recently, its underlying genetic features were largely unknown. During the past two years, reports have demonstrated that acquired structural variations affect the transcription factor FOS in a high proportion of cases. These rearrangements modify the terminal exon of the gene and are believed to stabilise both the FOS transcript and the encoded protein, resulting in high expression levels. Here, we applied in-depth genetic analyses to a series of 29 osteoblastomas, including five classified as epithelioid osteoblastoma. We found recurrent homozygous deletions of the NF2 gene in three of the five epithelioid cases and in one conventional osteoblastoma. These events were mutually exclusive from FOS mutations. Structural variations were determined by deep whole genome sequencing and the number of FOS-rearranged cases was less than previously reported (10/23, 43%). One conventional osteoblastoma displayed a novel mechanism of FOS upregulation; bringing the entire FOS gene under the control of the WNT5A enhancer that is itself activated by FOS. Taken together, we show that NF2 loss characterises a subgroup of osteoblastomas, distinct from FOS-rearranged cases. Both NF2 and FOS are involved in regulating bone homeostasis, thereby providing a mechanistic link to the excessive bone growth of osteoblastoma.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-12 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view