SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kurland Sara 1989 ) srt2:(2023)"

Search: WFRF:(Kurland Sara 1989 ) > (2023)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dussex, Nicolas, et al. (author)
  • Range-wide and temporal genomic analyses reveal the consequences of near-extinction in Swedish moose
  • 2023
  • In: Communications Biology. - 2399-3642. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Ungulate species have experienced severe declines over the past centuries through overharvesting and habitat loss. Even if many game species have recovered thanks to strict hunting regulation, the genome-wide impacts of overharvesting are still unclear. Here, we examine the temporal and geographical differences in genome-wide diversity in moose (Alces alces) over its whole range in Sweden by sequencing 87 modern and historical genomes. We found limited impact of the 1900s near-extinction event but local variation in inbreeding and load in modern populations, as well as suggestion of a risk of future reduction in genetic diversity and gene flow. Furthermore, we found candidate genes for local adaptation, and rapid temporal allele frequency shifts involving coding genes since the 1980s, possibly due to selective harvesting. Our results highlight that genomic changes potentially impacting fitness can occur over short time scales and underline the need to track both deleterious and selectively advantageous genomic variation.
  •  
2.
  • Kurland, Sara, 1989-, et al. (author)
  • Effects of subpopulation extinction on effective size (Ne) of metapopulations
  • 2023
  • In: Conservation Genetics. - : Springer Science and Business Media LLC. - 1566-0621 .- 1572-9737. ; 24:4, s. 417-433
  • Journal article (peer-reviewed)abstract
    • Population extinction is ubiquitous in all taxa. Such extirpations can reduce intraspecific diversity, but the extent to which genetic diversity of surviving populations are affected remains largely unclear. A key concept in this context is the effective population size (Ne), which quantifies the rate at which genetic diversity within populations is lost. Ne was developed for single, isolated populations while many natural populations are instead connected to other populations via gene flow. Recent analytical approaches and software permit modelling of Ne of interconnected populations (metapopulations). Here, we apply such tools to investigate how extinction of subpopulations affects Ne of the metapopulation (NeMeta) and of separate surviving subpopulations (NeRx) under different rates and patterns of genetic exchange between subpopulations. We assess extinction effects before and at migration-drift equilibrium. We find that the effect of extinction on NeMeta increases with reduced connectivity, suggesting that stepping stone models of migration are more impacted than island-migration models when the same number of subpopulations are lost. Furthermore, in stepping stone models, after extinction and before a new equilibrium has been reached, NeRx can vary drastically among surviving subpopulations and depends on their initial spatial position relative to extinct ones. Our results demonstrate that extinctions can have far more complex effects on the retention of intraspecific diversity than typically recognized. Metapopulation dynamics need heightened consideration in sustainable management and conservation, e.g., in monitoring genetic diversity, and are relevant to a wide range of species in the ongoing extinction crisis. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view