SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kurnia A) srt2:(2015)"

Search: WFRF:(Kurnia A) > (2015)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Olsson, Louise, 1974, et al. (author)
  • A multi-site kinetic model for NH3-SCR over Cu/SSZ-13
  • 2015
  • In: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373 .- 1873-3883. ; 174, s. 212-224
  • Journal article (peer-reviewed)abstract
    • In this study, we have developed a kinetic model for ammonia-SCR over a well-characterized Cu/SSZ-13 catalyst. It was found that a three-site model was needed in order to describe the ammonia temperature programmed desorption (TPD) with adsorption at 50 and 150 degrees C as well as ammonia oxidation, and NH3-SCR up to 600 degrees C. Based on literature studies, where detailed characterization of Cu/SSZ-13 have been conducted using several experimental techniques', we suggest the following physical interpretation of the S1 and S2 sites in the model. The S1 sites are associated with copper located in a six-membered ring, possibly slightly distorted due to interactions with-water and ammonia while, the S2 sites represent copper in the large cages or CuxOy species. In addition, ammonia is also stored on Bronsted acid sites, but in order not to complicate the model further, it was lumped together in the S1 and S2 sites. Finally, S3 sites have been added in order to describe the large amount of physisorbed ammonia at low temperature. This three-site model was capable of adequately describing the ammonia TPD experiments with the initial temperature of 50 and 150 degrees C. The heats of adsorption of ammonia on the Si and S2 sites were determined using micro-calorimeter experiments. Further, the main SCR reaction in the model occurs on S1 sites and the main ammonia oxidation reaction on S2 sites. However, due to the complex behavior associated with ammonia oxidation, where the conversion slightly decreased when the temperature was increased from 350 to 400 degrees C, an ammonia oxidation reaction occurring at low temperature with low rate needed to be introduced on S1. In a similar way, an added step was needed for ammonia-SCR on S2, which occurred at high temperature where the ammonia coverage on Si was low resulting in low conversion. To summarize, the-three-site model developed was capable of well describing the ammonia storage and release, ammonia oxidation as well as SCR and N2O formation across a broad temperature interval (100-600 degrees C).
  •  
2.
  • Supriyanto, , 1985, et al. (author)
  • Global kinetic modeling of hydrothermal aging of NH3-SCR over Cu-zeolites
  • 2015
  • In: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373 .- 1873-3883. ; 163, s. 382-392
  • Journal article (peer-reviewed)abstract
    • In this study, a kinetic model describing the effect of hydrothermal aging (at 500, 600, 700, 800 and 900 degrees C) on Cu-zeolites is developed. The model accounts for the impact of hydrothermal aging on key reactions such as ammonia adsorption/desorption, NH3 oxidation, NO oxidation, standard SCR, rapid SCR, and NO2 SCR. In addition, a mechanism for the complex N2O formation were developed. The effect of aging on ammonia adsorption and desorption were established using micro-calorimeter data. Thereafter, an aging factor model was developed containing two aging factors, one related to over-exchanged copper sites and the other to under-exchanged copper sites. This approach worked well for ammonia and NO oxidation up to an aging temperature of 800 degrees C, whereas for the SCR reactions only to 700 degrees C. According to UV-vis, fresh and mildly aged catalysts are dominated by copper hydroxyls, while after aging at high temperature copper oxides are observed. We therefore introduce one SCR reaction associated with copper oxides, simultaneously with one SCR reaction associated with ion-exchanged Cu sites and the updated model could describe the experimental findings well. The results from the model also suggest that the standard SCR reaction is more deactivated during aging compared to SCR with NO2 present in the feed. After the 900 degrees C aging the BEA structure had collapsed, resulting in that several parameters in the model needed to be retuned. The results from this modeling study clearly show how complex the hydro thermal aging is over copper zeolites.
  •  
3.
  • Wijayanti, Kurnia, 1979, et al. (author)
  • Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34
  • 2015
  • In: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373 .- 1873-3883. ; 166, s. 568-579
  • Journal article (peer-reviewed)abstract
    • An investigation into the impact of sulfur oxide on the activity of Cu-SAPO-34 towards selective catalytic reduction of NOx by NH3 has been conducted to clarify the possible mechanism of deactivation induced by sulfur. Several reactions including NH3 storage/TPD, NO/NH3 oxidations, standard and fast SCR, as well as SCR with an NO2/NOx ratio of 75% were performed at temperature range of 150-500 degrees C over the fresh Cu-SAPO-34 after it had been sulfated at 300 degrees C with 30 ppm SO2 in the presence of 8% O-2 and 5% H2O for 90 min. The catalyst is characterized by using XRD, BET, ICP-AES, H-2-TPR and micro-calorimetry. The BET surface area as well as the pore volume decreased after sulfur poisoning, hence some pores in the zeolite were blocked by sulfur. The standard SCR reaction was significantly influenced by the sulfur poisoning. The H-2-TPR data showed that there is less available copper that could undergo the redox cycle for the sulfated sample compared to the fresh sample and this could be the main reason for the deactivation seen. The conversion for NO during standard SCR showed a more pronounced decrease in activity compared to that of fast SCR and the smallest effect of the sulfur poisoning was observed for SCR with the 75% NO2/NOx. Hence, the SCR reactions in the presence of NO2 are less influenced by the sulfur on the surface and it is likely that the mechanism is different for SCR in the presence of NO2. Cu-SAPO-34 produced very small amounts of N2O and its production correlated with the amount of NO2 in the feed. From the calorimeter experiment, it was observed that the binding of SO2 is very strong on the catalyst sites, most likely the copper sites, and the heat of adsorption of SO2 was higher in the presence of O-2.
  •  
4.
  • Leistner, Kirsten, 1984, et al. (author)
  • Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions
  • 2015
  • In: Catalysis Today. - : Elsevier BV. - 0920-5861. ; 258, s. 49-55
  • Journal article (peer-reviewed)abstract
    • In this study, the ammonia-SCR process was investigated using 2.5 wt.% Cu/BEA, 2.6 wt.% Cu/SAPO-34 and 3.1 wt.% Cu/SSZ-13. Several reactions such as NO oxidation, ammonia oxidation, standard SCR, fast SCR and NO2 SCR were studied to understand the effect of zeolite type. It was found that the small-pore zeolites/silicoaluminophosphates with CHA structure (Cu/SAPO-34 and Cu/SSZ-13) exhibited higher SCR activity at 150°C and lower selectivity toward N2O formation during standard SCR conditions than Cu/BEA. However, formation of ammonium nitrate species during fast SCR conditions at 150°C occurred over Cu/CHA catalysts, which resulted in a gradual decrease of the NOx conversion. Such blocking was also observed over Cu/BEA, albeit to a minor extent. The ammonium nitrate formation and its decomposition temperature regimes resulted in that the Cu/BEA was catalytically more active at lower temperature than either Cu/SAPO-34 or Cu/SSZ-13 during fast SCR conditions. Additionally, our results show that the ammonium nitrate species were more stable on the small-pore zeolites than on Cu/BEA. Comparing the two Cu/CHA catalysts, Cu/SAPO-34 and Cu/SSZ-13, it was found that ammonia oxidation at high temperatures and ammonia SCR at 150°C was higher on Cu/SAPO-34. Further, TPR experiments showed that Cu in Cu/SAPO-34 is more easily reduced compared to Cu/SSZ-13. This can facilitate the redox processes and can thereby be a reason for the higher activity at 150°C for Cu/SAPO-34. In addition, Cu/SAPO-34 forms less N2O and this might be a result of the formation of more stable ammonium nitrates. To conclude, the choice of the type of zeolite/silicoaluminophosphates affects the activity and selectivity of the different steps in the SCR process.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view