SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(LeRoux Peter) srt2:(2005-2009)"

Search: WFRF:(LeRoux Peter) > (2005-2009)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Li, Chunmei, et al. (author)
  • An essential role for DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes
  • 2008
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 4:3, s. e1000044-
  • Journal article (peer-reviewed)abstract
    • MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 ( Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.
  •  
2.
  • Blacque, O E, et al. (author)
  • Functional genomics of the cilium, a sensory organelle
  • 2005
  • In: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 15:10, s. 935-941
  • Journal article (peer-reviewed)abstract
    • Cilia and flagella play important roles in many physiological processes, including cell and fluid movement, sensory perception, and development [1]. The biogenesis and maintenance of cilia depend on intraflagellar transport (IFT), a motility process that operates bidirectionally along the ciliary axoneme [1, 2]. Disruption in IFT and cilia function causes several human disorders, including polycystic kidneys, retinal dystrophy, neurosensory impairment, and Bardet-Bledl syndrome (BBS) [3-5]. To uncover new ciliary components, including IFT proteins, we compared C. elegans ciliated neuronal and nonciliated cells through serial analysis of gene expression (SAGE) and screened for genes potentially regulated by the cillogenic transcription factor, DAF-19 [6]. Using these complementary approaches, we identified numerous candidate ciliary genes and confirmed the ciliated-cell-specific expression of 14 novel genes. One of these, C27H5.7a, encodes a ciliary protein that undergoes IFT. As with other IFT proteins, its ciliary localization and transport is disrupted by mutations in IFT and bbs genes. Furthermore, we demonstrate that the ciliary structural defect of C. elegans dyf-13(mn396) mutants is caused by a mutation in C27H5.7a. Together, our findings help define a ciliary transcriptome and suggest that DYF-13, an evolutionarily conserved protein, is a novel core IFT component required for cilia function.
  •  
3.
  • Chen, Nansheng, et al. (author)
  • Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics
  • 2006
  • In: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 7:12, s. R126-
  • Journal article (peer-reviewed)abstract
    • Background: The recent availability of genome sequences of multiple related Caenorhabditis species has made it possible to identify, using comparative genomics, similarly transcribed genes in Caenorhabditis elegans and its sister species. Taking this approach, we have identified numerous novel ciliary genes in C. elegans, some of which may be orthologs of unidentified human ciliopathy genes. Results: By screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes ( including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of different tissue types and of daf-19(+) and daf-19(-) animals. Finally, we demonstrate that the dye-filling defect of dyf-5( mn400) animals, which is indicative of compromised exposure of cilia to the environment, is caused by a nonsense mutation in the serine/threonine protein kinase gene M04C9.5. Conclusion: Our comparative genomics-based predictions may be useful for identifying genes involved in human ciliopathies, including Bardet-Biedl Syndrome ( BBS), since the C. elegans orthologs of known human BBS genes contain X-box motifs and are required for normal dye filling in C. elegans ciliated neurons.
  •  
4.
  • Efimenko, Evgeni, et al. (author)
  • Analysis of xbx genes in C-elegans
  • 2005
  • In: Development. - : The Company of Biologists. - 0950-1991 .- 1477-9129. ; 132:8, s. 1923-1934
  • Journal article (peer-reviewed)abstract
    • Cilia and flagella are widespread eukaryotic subcellular components that are conserved from green algae to mammals. In different organisms they function in cell motility, movement of extracellular fluids and sensory reception. While the function and structural description of cilia and flagella are well established, there are many questions that remain unanswered. In particular, very little is known about the developmental mechanisms by which cilia are generated and shaped and how their components are assembled into functional machineries. To find genes involved in cilia development we used as a search tool a promoter motif, the X-box, which participates in the regulation of certain ciliary genes in the nematode Caenorhabditis elegans. By using a genome search approach for X-box promoter motif-containing genes (xbx genes) we identified a list of about 750 xbx genes (candidates). This list comprises some already known ciliary genes as well as new genes, many of which we hypothesize to be important for cilium structure and function. We derived a C elegans X-box consensus sequence by in vivo expression analysis. We found that xbx gene expression patterns were dependent on particular X-box nucleotide compositions and the distance from the respective gene start. We propose a model where DAF-19, the RFX-type transcription factor binding to the X-box, is responsible for the development of a ciliary module in C elegans, which includes genes for cilium structure, transport machinery, receptors and other factors.
  •  
5.
  • Efimenko, Evgeni, et al. (author)
  • Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory Cilia
  • 2006
  • In: Molecular Biology of the Cell. - 1059-1524 .- 1939-4586. ; 17:11, s. 4801-4811
  • Journal article (peer-reviewed)abstract
    • The intraflagellar transport (IFT) machinery required to build functional cilia consists of a multisubunit complex whose molecular composition, organization, and function are poorly understood. Here, we describe a novel tryptophan-aspartic acid (WD) repeat (WDR) containing IFT protein from Caenorhabditis elegans, DYF-2, that plays a critical role in maintaining the structural and functional integrity of the IFT machinery. We determined the identity of the dyf-2 gene by transgenic rescue of mutant phenotypes and by sequencing of mutant alleles. Loss of DYF-2 function selectively affects the assembly and motility of different IFT components and leads to defects in cilia structure and chemosensation in the nematode. Based on these observations, and the analysis of DYF-2 movement in a Bardet-Biedl syndrome mutant with partially disrupted IFT particles, we conclude that DYF-2 can associate with IFT particle complex B. At the same time, mutations in dyf-2 can interfere with the function of complex A components, suggesting an important role of this protein in the assembly of the IFT particle as a whole. Importantly, the mouse orthologue of DYF-2, WDR19, also localizes to cilia, pointing to an important evolutionarily conserved role for this WDR protein in cilia development and function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view