SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lehner M) srt2:(2020-2024)"

Search: WFRF:(Lehner M) > (2020-2024)

  • Result 1-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Georgiev, Boris, et al. (author)
  • A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
  •  
2.
  • Aoyama, T., et al. (author)
  • The anomalous magnetic moment of the muon in the Standard Model
  • 2020
  • In: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 887, s. 1-166
  • Research review (peer-reviewed)abstract
    • We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant α and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including O(α5) with negligible numerical uncertainty. The electroweak contribution is suppressed by (mμ/MW)2 and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at O(α2) and is due to hadronic vacuum polarization, whereas at O(α3) the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads aμSM = 116 591 810(43) x 10-11 and is smaller than the Brookhaven measurement by 3.7 σ. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future - which are also discussed here - make this quantity one of the most promising places to look for evidence of new physics.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Beck, S., et al. (author)
  • Experimenting with Open Innovation in Science (OIS) practices: A novel approach to co-developing research proposals
  • 2021
  • In: CERN IdeaSquare Journal of Experimental Innovation. - 2413-9505. ; 5:2, s. 28-49
  • Journal article (peer-reviewed)abstract
    • Co-producing scientific research with those who are affected by it is an emerging phenomenon in contemporary science. This article summarizes and reflects on both the process and outcome of a novel experiment to co-develop scientific research proposals in the field of Open Innovation in Science (OIS), wherein scholars engaged in the study of open and collaborative practices collaborated with the “users” of their research, i.e., scientists who apply such practices in their own research. The resulting co-developed research proposals focus on scientific collaboration, open data, and knowledge sharing and are available as an appendix to this article.
  •  
7.
  • Ramonet, M., et al. (author)
  • The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO 2 measurements : Atmospheric CO 2 anomaly
  • 2020
  • In: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Journal article (peer-reviewed)abstract
    • During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO 2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO 2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO 2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO 2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO 2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO 2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO 2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO 2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO 2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
8.
  • Demichev, Vadim, et al. (author)
  • A time-resolved proteomic and prognostic map of COVID-19
  • 2021
  • In: Cell Systems. - : Elsevier BV. - 2405-4712 .- 2405-4720. ; 12:8, s. 780-794.e7
  • Journal article (peer-reviewed)abstract
    • COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.
  •  
9.
  • Thieme, M. L., et al. (author)
  • Navigating trade-offs between dams and river conservation
  • 2021
  • In: Global Sustainability. - : Cambridge University Press. - 2059-4798. ; 4
  • Research review (peer-reviewed)abstract
    • Non-technical summary There has been a long history of conflicts, studies, and debate over how to both protect rivers and develop them sustainably. With a pause in new developments caused by the global pandemic, anticipated further implementation of the Paris Agreement and high-level global climate and biodiversity meetings in 2021, now is an opportune moment to consider the current trajectory of development and policy options for reconciling dams with freshwater system health. Technical summary We calculate potential loss of free-flowing rivers (FFRs) if proposed hydropower projects are built globally. Over 260,000 km of rivers, including Amazon, Congo, Irrawaddy, and Salween mainstem rivers, would lose free-flowing status if all dams were built. We propose a set of tested and proven solutions to navigate trade-offs associated with river conservation and dam development. These solution pathways are framed within the mitigation hierarchy and include (1) avoidance through either formal river protection or through exploration of alternative development options; (2) minimization of impacts through strategic or system-scale planning or re-regulation of downstream flows; (3) restoration of rivers through dam removal; and (4) mitigation of dam impacts through biodiversity offsets that include restoration and protection of FFRs. A series of examples illustrate how avoiding or reducing impacts on rivers is possible - particularly when implemented at a system scale - and can be achieved while maintaining or expanding benefits for climate resilience, water, food, and energy security. Social media summary Policy solutions and development pathways exist to navigate trade-offs to meet climate resilience, water, food, and energy security goals while safeguarding FFRs.
  •  
10.
  • Douse, Christopher H., et al. (author)
  • TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The HUSH complex represses retroviruses, transposons and genes to maintain the integrity of vertebrate genomes. HUSH regulates deposition of the epigenetic mark H3K9me3, but how its three core subunits — TASOR, MPP8 and Periphilin — contribute to assembly and targeting of the complex remains unknown. Here, we define the biochemical basis of HUSH assembly and find that its modular architecture resembles the yeast RNA-induced transcriptional silencing complex. TASOR, the central HUSH subunit, associates with RNA processing components. TASOR is required for H3K9me3 deposition over LINE-1 repeats and repetitive exons in transcribed genes. In the context of previous studies, this suggests that an RNA intermediate is important for HUSH activity. We dissect the TASOR and MPP8 domains necessary for transgene repression. Structure-function analyses reveal TASOR bears a catalytically-inactive PARP domain necessary for targeted H3K9me3 deposition. We conclude that TASOR is a multifunctional pseudo-PARP that directs HUSH assembly and epigenetic regulation of repetitive genomic targets.
  •  
11.
  • Prigozhin, Daniil M, et al. (author)
  • Periphilin self-association underpins epigenetic silencing by the HUSH complex
  • 2020
  • In: Nucleic Acids Research. - : Oxford University Press (OUP). - 1362-4962 .- 0305-1048. ; 48:18, s. 10313-10328
  • Journal article (peer-reviewed)abstract
    • Transcription of integrated DNA from viruses or transposable elements is tightly regulated to prevent pathogenesis. The Human Silencing Hub (HUSH), composed of Periphilin, TASOR and MPP8, silences transcriptionally active viral and endogenous transgenes. HUSH recruits effectors that alter the epigenetic landscape and chromatin structure, but how HUSH recognizes target loci and represses their expression remains unclear. We identify the physicochemical properties of Periphilin necessary for HUSH assembly and silencing. A disordered N-terminal domain (NTD) and structured C-terminal domain are essential for silencing. A crystal structure of the Periphilin-TASOR minimal core complex shows Periphilin forms an α-helical homodimer, bound by a single TASOR molecule. The NTD forms insoluble aggregates through an arginine/tyrosine-rich sequence reminiscent of low-complexity regions from self-associating RNA-binding proteins. Residues required for TASOR binding and aggregation were required for HUSH-dependent silencing and genome-wide deposition of repressive mark H3K9me3. The NTD was functionally complemented by low-complexity regions from certain RNA-binding proteins and proteins that form condensates or fibrils. Our work suggests the associative properties of Periphilin promote HUSH aggregation at target loci.
  •  
12.
  •  
13.
  • Fluet-Chouinard, Etienne, et al. (author)
  • Extensive global wetland loss over the past three centuries
  • 2023
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 614:7947, s. 281-286
  • Journal article (peer-reviewed)abstract
    • Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9–3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16–23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.
  •  
14.
  • Friman, Styrbjörn, 1948, et al. (author)
  • Long-term, Prolonged-release Tacrolimus-based Immunosuppression in De Novo Liver Transplant Recipients: 5-year Prospective Follow-up of Patients in the DIAMOND Study
  • 2021
  • In: Transplantation Direct. - : Ovid Technologies (Wolters Kluwer Health). - 2373-8731. ; 7:8
  • Journal article (peer-reviewed)abstract
    • Background. Immunosuppression with calcineurin inhibitors (CNIs) is reportedly associated with risk of renal impairment in liver transplant recipients. It is believed that this can be mitigated by decreasing initial exposure to CNIs or delaying CNI introduction until 3-4 d posttransplantation. The ADVAGRAF studied in combination with mycophenolate mofetil and basili ximab in liver transplantation (DIAMOND) trial evaluated different administration strategies for prolonged-release tacrolimus (PR-T). Methods. DIAMOND was a 24-wk, open-label, phase 3b trial in de novo liver transplant recipients randomized to: PR-T 0.2 mg/kg/d (Arm 1); PR-T 0.15-0.175 mg/kg/d plus basiliximab (Arm 2); or PR-T 0.2 mg/kg/d delayed until day 5 posttransplant plus basiliximab (Arm 3). In a 5-y follow-up, patients were maintained on an immunosuppressive regimen according to standard clinical practice (NCT02057484). Primary endpoint: graft survival (Kaplan-Meier analysis). Results. Follow-up study included 856 patients. Overall graft survival was 84.6% and 73.5% at 1 and 5 y post transplant, respectively. Five-year rates for Arms 1, 2, and 3 were 74.7%, 71.5%, and 74.5%, respectively. At 5 y, death-censored graft survival in the entire cohort was 74,7%. Overall graft survival in patients remaining on PR-T for z30 d was 79.1%. Graft survival in patients who remained on PR-T at 5 y was 87.3%. Patient survival was 86.6% at 1 y and 76.3% at 5 y, with survival rates similar in the 3 treatment arms at 5 y. Estimated glomerular filtration rate at the end of the 24-wk initial study and 5 y posttransplant was 62.1 and 61.5 mi./min/1.73 m(2), respectively, and was similar between the 3 treatment arms at 5 y. Overall, 18 (2.9%) patients had z1 adverse drug reaction, considered possibly related to PR-T in 6 patients. Conclusions. In the DIAMOND study patient cohort, renal function, graft survival, and patient survival were similar between treatment arms at 5 y posttransplant.
  •  
15.
  • Lindroth, Anders, et al. (author)
  • Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018
  • 2020
  • In: Philosophical Transactions of the Royal Society B-Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Journal article (peer-reviewed)abstract
    • The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m(-2)yr(-1)during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m(-2)yr(-1)with a median value of -59 g C m(-2)yr(-1). This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
16.
  • Volger, R., et al. (author)
  • Mining moon & mars with microbes : Biological approaches to extract iron from Lunar and Martian regolith
  • 2020
  • In: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 184
  • Journal article (peer-reviewed)abstract
    • The logistical supply of terrestrial materials to space is costly and puts limitations on exploration mission scenarios. In-situ resource utilization (ISRU) can alleviate logistical requirements and thus enables sustainable exploration of space. In this paper, a novel approach to ISRU, utilizing microorganisms to extract iron from Lunar or Martian regolith, is presented. Process yields, and kinetics are used to verify the theoretical feasibility of applying four different microorganisms. Based on yields alone, three of the four organisms were not investigated further for use in biological ISRU. For the remaining organism, Shewanella oneidensis, the survivability impact of Martian regolith simulant JSC-MARS1 and Mars-abundant magnesium perchlorate were studied and found to be minimal. The payback time of the infrastructure installation needed for the process with S. oneidensis on Mars was analyzed and the sensitivity to various parameters was investigated. Water recycling efficiency and initial regolith concentration were found to be key to process performance. With a water recycling efficiency of 99.99% and initial regolith concentration of 300 g/L, leading to an iron concentration of approximately 44.7 g/L, a payback time of 3.3 years was found.
  •  
17.
  • Yver-kwok, Camille, et al. (author)
  • Evaluation and optimization of ICOS atmosphere station data as part of the labeling process
  • 2021
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-8548 .- 1867-1381. ; 14:1, s. 89-116
  • Journal article (peer-reviewed)abstract
    • The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmosphere network through the 23 stations that were labeled between November 2017 and November 2019. We describe the labeling steps, as well as the quality controls, used to verify that the ICOS data (CO2, CH4, CO and meteorological measurements) attain the expected quality level defined within ICOS. To ensure the quality of the greenhouse gas data, three to four calibration gases and two target gases are measured: one target two to three times a day, the other gases twice a month. The data are verified on a weekly basis, and tests on the station sampling lines are performed twice a year. From these high-quality data, we conclude that regular calibrations of the CO2, CH4 and CO analyzers used here (twice a month) are important in particular for carbon monoxide (CO) due to the analyzer's variability and that reducing the number of calibration injections (from four to three) in a calibration sequence is possible, saving gas and extending the calibration gas lifespan. We also show that currently, the on-site water vapor correction test does not deliver quantitative results possibly due to environmental factors. Thus the use of a drying system is strongly recommended. Finally, the mandatory regular intake line tests are shown to be useful in detecting artifacts and leaks, as shown here via three different examples at the stations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-17 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view