SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Loos R) srt2:(2020-2024)"

Search: WFRF:(Loos R) > (2020-2024)

  • Result 1-50 of 53
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Ramdas, S., et al. (author)
  • A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids
  • 2022
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 109:8, s. 1366-1387
  • Journal article (peer-reviewed)abstract
    • A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.
  •  
4.
  • Wang, Z., et al. (author)
  • Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention
  • 2022
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 54:9, s. 1332-1344
  • Journal article (peer-reviewed)abstract
    • Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.
  •  
5.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
6.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
7.
  • Lagou, Vasiliki, et al. (author)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
8.
  • Surendran, Praveen, et al. (author)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Journal article (peer-reviewed)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
9.
  • Weinstock, Joshua S, et al. (author)
  • Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
  • 2023
  • In: Nature. - 1476-4687. ; 616:7958, s. 755-763
  • Journal article (peer-reviewed)abstract
    • Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, butthis effect was not seen inclones withdriver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimentalknockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
  •  
10.
  •  
11.
  • Winkler, TW, et al. (author)
  • Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals
  • 2022
  • In: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 580-
  • Journal article (peer-reviewed)abstract
    • Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Ntalla, Ioanna, et al. (author)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
16.
  • Silventoinen, K., et al. (author)
  • Educational attainment of same-sex and opposite-sex dizygotic twins : An individual-level pooled study of 19 twin cohorts
  • 2021
  • In: Hormones and Behavior. - : Elsevier. - 0018-506X .- 1095-6867. ; 136
  • Journal article (peer-reviewed)abstract
    • Comparing twins from same- and opposite-sex pairs can provide information on potential sex differences in a variety of outcomes, including socioeconomic-related outcomes such as educational attainment. It has been suggested that this design can be applied to examine the putative role of intrauterine exposure to testosterone for educational attainment, but the evidence is still disputed. Thus, we established an international database of twin data from 11 countries with 88,290 individual dizygotic twins born over 100 years and tested for differences between twins from same- and opposite-sex dizygotic pairs in educational attainment. Effect sizes with 95% confidence intervals (CI) were estimated by linear regression models after adjusting for birth year and twin study cohort. In contrast to the hypothesis, no difference was found in women (β = −0.05 educational years, 95% CI −0.11, 0.02). However, men with a same-sex co-twin were slightly more educated than men having an opposite-sex co-twin (β = 0.14 educational years, 95% CI 0.07, 0.21). No consistent differences in effect sizes were found between individual twin study cohorts representing Europe, the USA, and Australia or over the cohorts born during the 20th century, during which period the sex differences in education reversed favoring women in the latest birth cohorts. Further, no interaction was found with maternal or paternal education. Our results contradict the hypothesis that there would be differences in the intrauterine testosterone levels between same-sex and opposite-sex female twins affecting education. Our findings in men may point to social dynamics within same-sex twin pairs that may benefit men in their educational careers.
  •  
17.
  • Jang, Seon-Kyeong, et al. (author)
  • Rare genetic variants explain missing heritability in smoking.
  • 2022
  • In: Nature human behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 6:11, s. 1577-1586
  • Journal article (peer-reviewed)abstract
    • Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.
  •  
18.
  • Tobias, Deirdre K, et al. (author)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • In: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Research review (peer-reviewed)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • van de Vegte, Yordi, et al. (author)
  • Genetic insights into resting heart rate and its role in cardiovascular disease
  • 2023
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • The genetics and clinical consequences of resting heart rate (RHR) remain incompletely understood. Here, the authors discover new genetic variants associated with RHR and find that higher genetically predicted RHR decreases risk of atrial fibrillation and ischemic stroke. Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.
  •  
23.
  •  
24.
  • Young, William J., et al. (author)
  • Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways
  • 2022
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Journal article (peer-reviewed)abstract
    • The QT interval is a heritable electrocardiographic measure associated with arrhythmia risk when prolonged. Here, the authors used a series of genetic analyses to identify genetic loci, pathways, therapeutic targets, and relationships with cardiovascular disease. The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.
  •  
25.
  • Zhou, Wei, et al. (author)
  • Global Biobank Meta-analysis Initiative : Powering genetic discovery across human disease
  • 2022
  • In: Cell Genomics. - : Elsevier. - 2666-979X. ; 2:10
  • Journal article (peer-reviewed)abstract
    • Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)-a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.
  •  
26.
  •  
27.
  •  
28.
  • Evans-Hoeker, E, et al. (author)
  • Dietary and/or physical activity interventions in women with overweight or obesity prior to fertility treatment: protocol for a systematic review and individual participant data meta-analysis
  • 2022
  • In: BMJ open. - : BMJ. - 2044-6055. ; 12:11
  • Journal article (peer-reviewed)abstract
    • Dietary and/or physical activity interventions are often recommended for women with overweight or obesity as the first step prior to fertility treatment. However, randomised controlled trials (RCTs) so far have shown inconsistent results. Therefore, we propose this individual participant data meta-analysis (IPDMA) to evaluate the effectiveness and safety of dietary and/or physical activity interventions in women with infertility and overweight or obesity on reproductive, maternal and perinatal outcomes and to explore if there are subgroup(s) of women who benefit from each specific intervention or their combination (treatment-covariate interactions).We will include RCTs with dietary and/or physical activity interventions as core interventions prior to fertility treatment in women with infertility and overweight or obesity. The primary outcome will be live birth. We will search MEDLINE, Embase, Cochrane Central Register of Controlled Trials and trial registries to identify eligible studies. We will approach authors of eligible trials to contribute individual participant data (IPD). We will perform risk of bias assessments according to the Risk of Bias 2 tool and a random-effects IPDMA. We will then explore treatment-covariate interactions for important participant-level characteristics.Formal ethical approval for the project (Venus-IPD) was exempted by the medical ethics committee of the University Medical Center Groningen (METc code: 2021/563, date: 17 November 2021). Data transfer agreement will be obtained from each participating institute/hospital. Outcomes will be disseminated internationally through the collaborative group, conference presentations and peer-reviewed publication.CRD42021266201.
  •  
29.
  • Gorski, Mathias, et al. (author)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Journal article (peer-reviewed)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
30.
  • Gorski, Mathias, et al. (author)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Journal article (peer-reviewed)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
31.
  • Herle, M, et al. (author)
  • Identifying typical trajectories in longitudinal data: modelling strategies and interpretations
  • 2020
  • In: European journal of epidemiology. - : Springer Science and Business Media LLC. - 1573-7284 .- 0393-2990. ; 35:3, s. 205-222
  • Journal article (peer-reviewed)abstract
    • Individual-level longitudinal data on biological, behavioural, and social dimensions are becoming increasingly available. Typically, these data are analysed using mixed effects models, with the result summarised in terms of an average trajectory plus measures of the individual variations around this average. However, public health investigations would benefit from finer modelling of these individual variations which identify not just one average trajectory, but several typical trajectories. If evidence of heterogeneity in the development of these variables is found, the role played by temporally preceding (explanatory) variables as well as the potential impact of differential trajectories may have on later outcomes is often of interest. A wide choice of methods for uncovering typical trajectories and relating them to precursors and later outcomes exists. However, despite their increasing use, no practical overview of these methods targeted at epidemiological applications exists. Hence we provide: (a) a review of the three most commonly used methods for the identification of latent trajectories (growth mixture models, latent class growth analysis, and longitudinal latent class analysis); and (b) recommendations for the identification and interpretation of these trajectories and of their relationship with other variables. For illustration, we use longitudinal data on childhood body mass index and parental reports of fussy eating, collected in the Avon Longitudinal Study of Parents and Children.
  •  
32.
  •  
33.
  • Pellegrinelli, V, et al. (author)
  • Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance
  • 2022
  • In: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 4:4, s. 476-
  • Journal article (peer-reviewed)abstract
    • Resulting from impaired collagen turnover, fibrosis is a hallmark of adipose tissue (AT) dysfunction and obesity-associated insulin resistance (IR). Prolidase, also known as peptidase D (PEPD), plays a vital role in collagen turnover by degrading proline-containing dipeptides but its specific functional relevance in AT is unknown. Here we show that in human and mouse obesity, PEPD expression and activity decrease in AT, and PEPD is released into the systemic circulation, which promotes fibrosis and AT IR. Loss of the enzymatic function of PEPD by genetic ablation or pharmacological inhibition causes AT fibrosis in mice. In addition to its intracellular enzymatic role, secreted extracellular PEPD protein enhances macrophage and adipocyte fibro-inflammatory responses via EGFR signalling, thereby promoting AT fibrosis and IR. We further show that decreased prolidase activity is coupled with increased systemic levels of PEPD that act as a pathogenic trigger of AT fibrosis and IR. Thus, PEPD produced by macrophages might serve as a biomarker of AT fibro-inflammation and could represent a therapeutic target for AT fibrosis and obesity-associated IR and type 2 diabetes. Obesity-associated AT fibro-inflammation and metabolic disturbances are linked to PEPD activity and PEPD extracellular levels.
  •  
34.
  • Prins, Jonne T H, et al. (author)
  • Surgical stabilization of rib fractures versus nonoperative treatment in patients with multiple rib fractures following cardiopulmonary resuscitation: An international, retrospective matched case-control study.
  • 2022
  • In: The journal of trauma and acute care surgery. - 2163-0763. ; 93:6, s. 727-735
  • Journal article (peer-reviewed)abstract
    • The presence of six or more rib fractures or a displaced rib fracture due to cardiopulmonary resuscitation (CPR) has been associated with longer hospital and intensive care unit (ICU) length of stay (LOS). Evidence on the effect of surgical stabilization of rib fractures (SSRF) following CPR is limited. This study aimed to evaluate outcomes after SSRF versus nonoperative management in patients with multiple rib fractures after CPR.An international, retrospective study was performed in patients who underwent SSRF or nonoperative management for multiple rib fractures following CPR between January 1, 2012, and July 31, 2020. Patients who underwent SSRF were matched to nonoperative controls by cardiac arrest location and cause, rib fracture pattern, and age. The primary outcome was ICU LOS.Thirty-nine operatively treated patient were matched to 66 nonoperatively managed controls with comparable CPR-related characteristics. Patients who underwent SSRF more often had displaced rib fractures (n = 28 [72%] vs. n = 31 [47%]; p = 0.015) and a higher median number of displaced ribs (2 [P 25 -P 75 , 0-3] vs. 0 [P 25 -P 75 , 0-3]; p = 0.014). Surgical stabilization of rib fractures was performed at a median of 5 days (P 25 -P 75 , 3-8 days) after CPR. In the nonoperative group, a rib fixation specialist was consulted in 14 patients (21%). The ICU LOS was longer in the SSRF group (13 days [P 25 -P 75 , 9-23 days] vs. 9 days [P 25 -P 75 , 5-15 days]; p = 0.004). Mechanical ventilator-free days, hospital LOS, thoracic complications, and mortality were similar.Despite matching, those who underwent SSRF over nonoperative management for multiple rib fractures following CPR had more severe consequential chest wall injury and a longer ICU LOS. A benefit of SSRF on in-hospital outcomes could not be demonstrated. A low consultation rate for rib fixation in the nonoperative group indicates that the consideration to perform SSRF in this population might be associated with other nonradiographic or injury-related variables.Therapeutic/Care Management; Level III.
  •  
35.
  • Sawicki, J., et al. (author)
  • Perspectives on adaptive dynamical systems
  • 2023
  • In: Chaos. - 1054-1500 .- 1089-7682. ; 33:7
  • Journal article (peer-reviewed)abstract
    • Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.
  •  
36.
  • Silventoinen, Karri, et al. (author)
  • Genetic and environmental variation in educational attainment : an individual-based analysis of 28 twin cohorts
  • 2020
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • We investigated the heritability of educational attainment and how it differed between birth cohorts and cultural–geographic regions. A classical twin design was applied to pooled data from 28 cohorts representing 16 countries and including 193,518 twins with information on educational attainment at 25 years of age or older. Genetic factors explained the major part of individual differences in educational attainment (heritability: a2 = 0.43; 0.41–0.44), but also environmental variation shared by co-twins was substantial (c2 = 0.31; 0.30–0.33). The proportions of educational variation explained by genetic and shared environmental factors did not differ between Europe, North America and Australia, and East Asia. When restricted to twins 30 years or older to confirm finalized education, the heritability was higher in the older cohorts born in 1900–1949 (a2 = 0.44; 0.41–0.46) than in the later cohorts born in 1950–1989 (a2 = 0.38; 0.36–0.40), with a corresponding lower influence of common environmental factors (c2 = 0.31; 0.29–0.33 and c2 = 0.34; 0.32–0.36, respectively). In conclusion, both genetic and environmental factors shared by co-twins have an important influence on individual differences in educational attainment. The effect of genetic factors on educational attainment has decreased from the cohorts born before to those born after the 1950s.
  •  
37.
  • Silventoinen, Karri, et al. (author)
  • Smoking remains associated with education after controlling for social background and genetic factors in a study of 18 twin cohorts
  • 2022
  • In: Scientific Reports. - : Nature Portfolio. - 2045-2322. ; 12:1
  • Journal article (peer-reviewed)abstract
    • We tested the causality between education and smoking using the natural experiment of discordant twin pairs allowing to optimally control for background genetic and childhood social factors. Data from 18 cohorts including 10,527 monozygotic (MZ) and same-sex dizygotic (DZ) twin pairs discordant for education and smoking were analyzed by linear fixed effects regression models. Within twin pairs, education levels were lower among the currently smoking than among the never smoking co-twins and this education difference was larger within DZ than MZ pairs. Similarly, education levels were higher among former smoking than among currently smoking co-twins, and this difference was larger within DZ pairs. Our results support the hypothesis of a causal effect of education on both current smoking status and smoking cessation. However, the even greater intra-pair differences within DZ pairs, who share only 50% of their segregating genes, provide evidence that shared genetic factors also contribute to these associations.
  •  
38.
  •  
39.
  • Wang, Anqi, et al. (author)
  • Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants
  • 2023
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:12, s. 2065-2074
  • Journal article (peer-reviewed)abstract
    • The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
  •  
40.
  • Abdulkadir, M, et al. (author)
  • Polygenic Score for Body Mass Index Is Associated with Disordered Eating in a General Population Cohort
  • 2020
  • In: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 9:4
  • Journal article (peer-reviewed)abstract
    • Background: Disordered eating (DE) is common and is associated with body mass index (BMI). We investigated whether genetic variants for BMI were associated with DE. Methods: BMI polygenic scores (PGS) were calculated for participants of the Avon Longitudinal Study of Parents and Children (ALSPAC; N = 8654) and their association with DE tested. Data on DE behaviors (e.g., binge eating and compensatory behaviors) were collected at ages 14, 16, 18 years, and DE cognitions (e.g., body dissatisfaction) at 14 years. Mediation analyses determined whether BMI mediated the association between the BMI-PGS and DE. Results: The BMI-PGS was positively associated with fasting (OR = 1.42, 95% CI = 1.25, 1.61), binge eating (OR = 1.28, 95% CI = 1.12, 1.46), purging (OR = 1.20, 95% CI = 1.02, 1.42), body dissatisfaction (Beta = 0.99, 95% CI = 0.77, 1.22), restrained eating (Beta = 0.14, 95% CI = 0.10, 1.17), emotional eating (Beta = 0.21, 95% CI = 0.052, 0.38), and negatively associated with thin ideal internalization (Beta = −0.15, 95% CI = −0.23, −0.07) and external eating (Beta = −0.19, 95% CI = −0.30, −0.09). These associations were mainly mediated by BMI. Conclusions: Genetic variants associated with BMI are also associated with DE. This association was mediated through BMI suggesting that weight potentially sits on the pathway from genetic liability to DE.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  • Herle, M, et al. (author)
  • A longitudinal study of eating behaviours in childhood and later eating disorder behaviours and diagnoses
  • 2020
  • In: The British journal of psychiatry : the journal of mental science. - : Royal College of Psychiatrists. - 1472-1465. ; 216:2, s. 113-119
  • Journal article (peer-reviewed)abstract
    • Eating behaviours in childhood are considered as risk factors for eating disorder behaviours and diagnoses in adolescence. However, few longitudinal studies have examined this association.AimsWe investigated associations between childhood eating behaviours during the first ten years of life and eating disorder behaviours (binge eating, purging, fasting and excessive exercise) and diagnoses (anorexia nervosa, binge eating disorder, purging disorder and bulimia nervosa) at 16 years.MethodData on 4760 participants from the Avon Longitudinal Study of Parents and Children were included. Longitudinal trajectories of parent-rated childhood eating behaviours (8 time points, 1.3–9 years) were derived by latent class growth analyses. Eating disorder diagnoses were derived from self-reported, parent-reported and objectively measured anthropometric data at age 16 years. We estimated associations between childhood eating behaviours and eating disorder behaviours and diagnoses, using multivariable logistic regression models.ResultsChildhood overeating was associated with increased risk of adolescent binge eating (risk difference, 7%; 95% CI 2 to 12) and binge eating disorder (risk difference, 1%; 95% CI 0.2 to 3). Persistent undereating was associated with higher anorexia nervosa risk in adolescent girls only (risk difference, 6%; 95% CI, 0 to 12). Persistent fussy eating was associated with greater anorexia nervosa risk (risk difference, 2%; 95% CI 0 to 4).ConclusionsOur results suggest continuities of eating behaviours into eating disorders from early life to adolescence. It remains to be determined whether childhood eating behaviours are an early manifestation of a specific phenotype or whether the mechanisms underlying this continuity are more complex. Findings have the potential to inform preventative strategies for eating disorders.
  •  
46.
  •  
47.
  •  
48.
  • Hubel, C, et al. (author)
  • Childhood overeating is associated with adverse cardiometabolic and inflammatory profiles in adolescence
  • 2021
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 12478-
  • Journal article (peer-reviewed)abstract
    • Childhood eating behaviour contributes to the rise of obesity and related noncommunicable disease worldwide. However, we lack a deep understanding of biochemical alterations that can arise from aberrant eating behaviour. In this study, we prospectively associate longitudinal trajectories of childhood overeating, undereating, and fussy eating with metabolic markers at age 16 years to explore adolescent metabolic alterations related to specific eating patterns in the first 10 years of life. Data are from the Avon Longitudinal Study of Parents and Children (n = 3104). We measure 158 metabolic markers with a high-throughput (1H) NMR metabolomics platform. Increasing childhood overeating is prospectively associated with an adverse cardiometabolic profile (i.e., hyperlipidemia, hypercholesterolemia, hyperlipoproteinemia) in adolescence; whereas undereating and fussy eating are associated with lower concentrations of the amino acids glutamine and valine, suggesting a potential lack of micronutrients. Here, we show associations between early behavioural indicators of eating and metabolic markers.
  •  
49.
  •  
50.
  • Jelenkovic, A, et al. (author)
  • Genetic and environmental influences on human height from infancy through adulthood at different levels of parental education
  • 2020
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 7974-
  • Journal article (peer-reviewed)abstract
    • Genetic factors explain a major proportion of human height variation, but differences in mean stature have also been found between socio-economic categories suggesting a possible effect of environment. By utilizing a classical twin design which allows decomposing the variation of height into genetic and environmental components, we tested the hypothesis that environmental variation in height is greater in offspring of lower educated parents. Twin data from 29 cohorts including 65,978 complete twin pairs with information on height at ages 1 to 69 years and on parental education were pooled allowing the analyses at different ages and in three geographic-cultural regions (Europe, North America and Australia, and East Asia). Parental education mostly showed a positive association with offspring height, with significant associations in mid-childhood and from adolescence onwards. In variance decomposition modeling, the genetic and environmental variance components of height did not show a consistent relation to parental education. A random-effects meta-regression analysis of the aggregate-level data showed a trend towards greater shared environmental variation of height in low parental education families. In conclusion, in our very large dataset from twin cohorts around the globe, these results provide only weak evidence for the study hypothesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 53
Type of publication
journal article (50)
conference paper (1)
research review (1)
Type of content
peer-reviewed (46)
other academic/artistic (6)
Author/Editor
Loos, RJF (20)
Loos, Ruth J F (16)
Lind, Lars (14)
Laakso, M. (12)
Boehnke, M (12)
Rotter, Jerome I. (11)
show more...
Franke, A (10)
Snieder, H. (10)
Gieger, C (10)
Watkins, H (10)
Hayward, C. (10)
Psaty, Bruce M (10)
Kaprio, J (9)
Mahajan, A. (9)
Langenberg, C. (9)
Gudnason, V (9)
Melander, O. (9)
Metspalu, A (9)
Salomaa, V (9)
van der Harst, P (9)
Polašek, O. (9)
Vitart, V (9)
Taylor, Kent D. (9)
Willemsen, G (8)
Peters, A (8)
Hubel, C (8)
Bulik, CM (8)
Abdulkadir, M (8)
Herle, M (8)
Micali, N (8)
Psaty, BM (8)
Lehtimaki, T. (8)
Hveem, K (8)
Campbell, H (8)
Stefansson, Kari (8)
Verweij, Niek (8)
Campbell, A (8)
Kuusisto, J. (8)
Esko, T (8)
Wilson, JF (8)
Lind, L (8)
Stefansson, K (8)
Goel, A. (8)
van der Harst, Pim (8)
Tonjes, A (8)
Chambers, JC (8)
Morris, Andrew P. (8)
Verweij, N (8)
Nadkarni, GN (8)
Guo, Xiuqing (8)
show less...
University
Karolinska Institutet (36)
Uppsala University (20)
Lund University (20)
University of Gothenburg (11)
Umeå University (5)
University of Skövde (3)
show more...
Högskolan Dalarna (3)
Stockholm University (2)
Jönköping University (2)
Chalmers University of Technology (2)
Luleå University of Technology (1)
Örebro University (1)
Linköping University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (53)
Research subject (UKÄ/SCB)
Medical and Health Sciences (31)
Natural sciences (8)
Social Sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view