SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mizuno M) srt2:(2020-2024)"

Search: WFRF:(Mizuno M) > (2020-2024)

  • Result 1-50 of 58
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
2.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
3.
  • Abdalla, H., et al. (author)
  • Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
  • 2021
  • In: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
  •  
4.
  • Ajello, M., et al. (author)
  • Fermi and Swift Observations of GRB 190114C : Tracing the Evolution of High-energy Emission from Prompt to Afterglow
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 890:1
  • Journal article (peer-reviewed)abstract
    • We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma -ray Space Telescope and the Neil Gehrels Swift Observatory. The prompt gamma-ray emission was detected by the Fermi GRB Monitor (GBM), the Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT) and the long-lived afterglow emission was subsequently observed by the GBM, LAT, Swift X-ray Telescope (XRT), and Swift UV Optical Telescope. The early -time observations reveal multiple emission components that evolve independently, with a delayed power-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed by the XRT at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to observe the transition from internal-shock- to external-shock-dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind -like circumstellar environment. We estimate the initial bulk Lorentz factor using the observed high-energy spectral cutoff. Considering the onset of the afterglow component, we constrain the deceleration radius at which this forward shock begins to radiate in order to estimate the maximum synchrotron energy as a function of time. We find that even in the LAT energy range, there exist high-energy photons that are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high-energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy -loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process.
  •  
5.
  • Abdollahi, S., et al. (author)
  • Fermi Large Area Telescope Fourth Source Catalog
  • 2020
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 247:1
  • Journal article (peer-reviewed)abstract
    • We present the fourth Fermi Large Area Telescope catalog (4FGL) of gamma-ray sources. Based on the first eight years of science data from the Fermi Gamma-ray Space Telescope mission in the energy range from 50 MeV to 1 TeV, it is the deepest yet in this energy range. Relative to the 3FGL catalog, the 4FGL catalog has twice as much exposure as well as a number of analysis improvements, including an updated model for the Galactic diffuse gamma-ray emission, and two sets of light curves (one-year and two-month intervals). The 4FGL catalog includes 5064 sources above 4 sigma significance, for which we provide localization and spectral properties. Seventy-five sources are modeled explicitly as spatially extended, and overall, 358 sources are considered as identified based on angular extent, periodicity, or correlated variability observed at other wavelengths. For 1336 sources, we have not found plausible counterparts at other wavelengths. More than 3130 of the identified or associated sources are active galaxies of the blazar class, and 239 are pulsars.
  •  
6.
  • Kim, Jae-Young, et al. (author)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Journal article (peer-reviewed)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
7.
  • Georgiev, Boris, et al. (author)
  • A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
  •  
8.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Journal article (peer-reviewed)abstract
    • Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈|v|〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (|vint| < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*
  •  
9.
  • Roelofs, F., et al. (author)
  • Polarimetric Geometric Modeling for mm-VLBI Observations of Black Holes
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) is a millimeter very long baseline interferometry (VLBI) array that has imaged the apparent shadows of the supermassive black holes M87* and Sagittarius A*. Polarimetric data from these observations contain a wealth of information on the black hole and accretion flow properties. In this work, we develop polarimetric geometric modeling methods for mm-VLBI data, focusing on approaches that fit data products with differing degrees of invariance to broad classes of calibration errors. We establish a fitting procedure using a polarimetric “m-ring” model to approximate the image structure near a black hole. By fitting this model to synthetic EHT data from general relativistic magnetohydrodynamic models, we show that the linear and circular polarization structure can be successfully approximated with relatively few model parameters. We then fit this model to EHT observations of M87* taken in 2017. In total intensity and linear polarization, the m-ring fits are consistent with previous results from imaging methods. In circular polarization, the m-ring fits indicate the presence of event-horizon-scale circular polarization structure, with a persistent dipolar asymmetry and orientation across several days. The same structure was recovered independently of observing band, used data products, and model assumptions. Despite this broad agreement, imaging methods do not produce similarly consistent results. Our circular polarization results, which imposed additional assumptions on the source structure, should thus be interpreted with some caution. Polarimetric geometric modeling provides a useful and powerful method to constrain the properties of horizon-scale polarized emission, particularly for sparse arrays like the EHT.
  •  
10.
  • Ajello, M., et al. (author)
  • Fermi Large Area Telescope Performance after 10 Years of Operation
  • 2021
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 256:1
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope (LAT), the primary instrument for the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from 30 MeV to more than 300 GeV. We describe the performance of the instrument at the 10 yr milestone. LAT performance remains well within the specifications defined during the planning phase, validating the design choices and supporting the compelling case to extend the duration of the Fermi mission. The details provided here will be useful when designing the next generation of high-energy gamma-ray observatories.
  •  
11.
  • Janssen, Michael, et al. (author)
  • Event Horizon Telescope observations of the jet launching and collimation in Centaurus A
  • 2021
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 5:10, s. 1017-1028
  • Journal article (peer-reviewed)abstract
    • Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6.
  •  
12.
  • Ajello, M., et al. (author)
  • A gamma-ray pulsar timing array constrains the nanohertz gravitational wave background
  • 2022
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 376:6592, s. 521-523
  • Journal article (peer-reviewed)abstract
    • After large galaxies merge, their central supermassive black holes are expected to form binary systems. Their orbital motion should generate a gravitational wave background (GWB) at nanohertz frequencies. Searches for this background use pulsar timing arrays, which perform long-term monitoring of millisecond pulsars at radio wavelengths. We used 12.5 years of Fermi Large Area Telescope data to form a gamma-ray pulsar timing array. Results from 35 bright gamma-ray pulsars place a 95% credible limit on the GWB characteristic strain of 1.0 x 10(-14) at a frequency of 1 year(-1). The sensitivity is expected to scale with t(obs), the observing time span, as t(obs)(-13/6). This direct measurement provides an independent probe of the GWB while offering a check on radio noise models.
  •  
13.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A∗ (Sgr A∗), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M≈ 4 × 106 M⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A∗. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%°-10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication.
  •  
14.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A∗ Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Journal article (peer-reviewed)abstract
    • In a companion paper, we present the first spatially resolved polarized image of Sagittarius A∗ on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%-28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87∗, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A∗ (equivalent to ≈ 46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow.
  •  
15.
  • Akiyama, Kazunori, et al. (author)
  • The persistent shadow of the supermassive black hole of M 87: I. Observations, calibration, imaging, and analysis*
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Journal article (peer-reviewed)abstract
    • In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3-3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30 relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5× 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.
  •  
16.
  • Broderick, Avery E., et al. (author)
  • THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87.
  •  
17.
  • Eatough, Ralph P., et al. (author)
  • Verification of Radiative Transfer Schemes for the EHT
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) Collaboration has recently produced the first resolved images of the central supermassive black hole in the giant elliptical galaxy M87. Here we report on tests of the consistency and accuracy of the general relativistic radiative transfer codes used within the collaboration to model M87∗ and Sgr A∗. We compare and evaluate (1) deflection angles for equatorial null geodesics in a Kerr spacetime; (2) images calculated from a series of simple, parameterized matter distributions in the Kerr metric using simplified emissivities and absorptivities; (3) for a subset of codes, images calculated from general relativistic magnetohydrodynamics simulations using different realistic synchrotron emissivities and absorptivities; (4) observables for the 2017 configuration of EHT, including visibility amplitudes and closure phases. The error in total flux is of order 1% when the codes are run with production numerical parameters. The dominant source of discrepancies for small camera distances is the location and detailed setup of the software "camera"that each code uses to produce synthetic images. We find that when numerical parameters are suitably chosen and the camera is sufficiently far away the images converge and that for given transfer coefficients, numerical uncertainties are unlikely to limit parameter estimation for the current generation of EHT observations. The purpose of this paper is to describe a verification and comparison of EHT radiative transfer codes. It is not to verify EHT models more generally.
  •  
18.
  • Roelofs, F., et al. (author)
  • SYMBA: An end-to-end VLBI synthetic data generation pipeline: Simulating Event Horizon Telescope observations of M 87
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636
  • Journal article (peer-reviewed)abstract
    • Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images.
  •  
19.
  • Abdollahi, S., et al. (author)
  • Incremental Fermi Large Area Telescope Fourth Source Catalog
  • 2022
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 260:2
  • Journal article (peer-reviewed)abstract
    • We present an incremental version (4FGL-DR3, for Data Release 3) of the fourth Fermi Large Area Telescope (LAT) catalog of γ-ray sources. Based on the first 12 years of science data in the energy range from 50 MeV to 1 TeV, it contains 6658 sources. The analysis improves on that used for the 4FGL catalog over eight years of data: more sources are fit with curved spectra, we introduce a more robust spectral parameterization for pulsars, and we extend the spectral points to 1 TeV. The spectral parameters, spectral energy distributions, and associations are updated for all sources. Light curves are rebuilt for all sources with 1 yr intervals (not 2 month intervals). Among the 5064 original 4FGL sources, 16 were deleted, 112 are formally below the detection threshold over 12 yr (but are kept in the list), while 74 are newly associated, 10 have an improved association, and seven associations were withdrawn. Pulsars are split explicitly between young and millisecond pulsars. Pulsars and binaries newly detected in LAT sources, as well as more than 100 newly classified blazars, are reported. We add three extended sources and 1607 new point sources, mostly just above the detection threshold, among which eight are considered identified, and 699 have a plausible counterpart at other wavelengths. We discuss the degree-scale residuals to the global sky model and clusters of soft unassociated point sources close to the Galactic plane, which are possibly related to limitations of the interstellar emission model and missing extended sources.
  •  
20.
  • Baldini, L., et al. (author)
  • Catalog of Long-term Transient Sources in the First 10 yr of Fermi-LAT Data
  • 2021
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 256:1
  • Journal article (peer-reviewed)abstract
    • We present the first Fermi Large Area Telescope (LAT) catalog of long-term gamma-ray transient sources (1FLT). This comprises sources that were detected on monthly time intervals during the first decade of Fermi-LAT operations. The monthly timescale allows us to identify transient and variable sources that were not yet reported in other Fermi-LAT catalogs. The monthly data sets were analyzed using a wavelet-based source detection algorithm that provided the candidate new transient sources. The search was limited to the extragalactic regions of the sky to avoid the dominance of the Galactic diffuse emission at low Galactic latitudes. The transient candidates were then analyzed using the standard Fermi-LAT maximum likelihood analysis method. All sources detected with a statistical significance above 4 sigma in at least one monthly bin were listed in the final catalog. The 1FLT catalog contains 142 transient gamma-ray sources that are not included in the 4FGL-DR2 catalog. Many of these sources (102) have been confidently associated with active galactic nuclei (AGNs): 24 are associated with flat-spectrum radio quasars, 1 with a BL Lac object, 70 with blazars of uncertain type, 3 with radio galaxies, 1 with a compact steep-spectrum radio source, 1 with a steep-spectrum radio quasar, and 2 with AGNs of other types. The remaining 40 sources have no candidate counterparts at other wavelengths. The median gamma-ray spectral index of the 1FLT-AGN sources is softer than that reported in the latest Fermi-LAT AGN general catalog. This result is consistent with the hypothesis that detection of the softest gamma-ray emitters is less efficient when the data are integrated over year-long intervals.
  •  
21.
  • Abdollahi, S., et al. (author)
  • Search for New Cosmic-Ray Acceleration Sites within the 4FGL Catalog Galactic Plane Sources
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 933:2
  • Journal article (peer-reviewed)abstract
    • Cosmic rays are mostly composed of protons accelerated to relativistic speeds. When those protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma-rays. This offers a compelling way to identify the acceleration sites of protons. A characteristic hadronic spectrum, with a low-energy break around 200 MeV, was detected in the gamma-ray spectra of four supernova remnants (SNRs), IC 443, W44, W49B, and W51C, with the Fermi Large Area Telescope. This detection provided direct evidence that cosmic-ray protons are (re-)accelerated in SNRs. Here, we present a comprehensive search for low-energy spectral breaks among 311 4FGL catalog sources located within 5° from the Galactic plane. Using 8 yr of data from the Fermi Large Area Telescope between 50 MeV and 1 GeV, we find and present the spectral characteristics of 56 sources with a spectral break confirmed by a thorough study of systematic uncertainty. Our population of sources includes 13 SNRs for which the proton–proton interaction is enhanced by the dense target material; the high-mass gamma-ray binary LS I+61 303; the colliding wind binary η Carinae; and the Cygnus star-forming region. This analysis better constrains the origin of the gamma-ray emission and enlarges our view to potential new cosmic-ray acceleration sites.
  •  
22.
  • Ajello, M., et al. (author)
  • High-energy emission from a magnetar giant flare in the Sculptor galaxy
  • 2021
  • In: Nature Astronomy. - : Springer Nature. - 2397-3366. ; 5:4, s. 385-391
  • Journal article (peer-reviewed)abstract
    • Magnetars are the most highly magnetized neutron stars in the cosmos (with magnetic field 1013–1015 G). Giant flares from magnetars are rare, short-duration (about 0.1 s) bursts of hard X-rays and soft γ rays1,2. Owing to the limited sensitivity and energy coverage of previous telescopes, no magnetar giant flare has been detected at gigaelectronvolt (GeV) energies. Here, we report the discovery of GeV emission from a magnetar giant flare on 15 April 2020 (refs. 3,4 and A. J. Castro-Tirado et al., manuscript in preparation). The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope detected GeV γ rays from 19 s until 284 s after the initial detection of a signal in the megaelectronvolt (MeV) band. Our analysis shows that these γ rays are spatially associated with the nearby (3.5 megaparsecs) Sculptor galaxy and are unlikely to originate from a cosmological γ-ray burst. Thus, we infer that the γ rays originated with the magnetar giant flare in Sculptor. We suggest that the GeV signal is generated by an ultra-relativistic outflow that first radiates the prompt MeV-band photons, and then deposits its energy far from the stellar magnetosphere. After a propagation delay, the outflow interacts with environmental gas and produces shock waves that accelerate electrons to very high energies; these electrons then emit GeV γ rays as optically thin synchrotron radiation. This observation implies that a relativistic outflow is associated with the magnetar giant flare, and suggests the possibility that magnetars can power some short γ-ray bursts.
  •  
23.
  •  
24.
  • Ajello, M., et al. (author)
  • Gamma Rays from Fast Black-hole Winds
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 921:2
  • Journal article (peer-reviewed)abstract
    • Massive black holes at the centers of galaxies can launch powerful wide-angle winds that, if sustained over time, can unbind the gas from the stellar bulges of galaxies. These winds may be responsible for the observed scaling relation between the masses of the central black holes and the velocity dispersion of stars in galactic bulges. Propagating through the galaxy, the wind should interact with the interstellar medium creating a strong shock, similar to those observed in supernovae explosions, which is able to accelerate charged particles to high energies. In this work we use data from the Fermi Large Area Telescope to search for the gamma-ray emission from galaxies with an ultrafast outflow (UFO): a fast (v similar to 0.1 c), highly ionized outflow, detected in absorption at hard X-rays in several nearby active galactic nuclei (AGN). Adopting a sensitive stacking analysis we are able to detect the average gamma-ray emission from these galaxies and exclude that it is due to processes other than UFOs. Moreover, our analysis shows that the gamma-ray luminosity scales with the AGN bolometric luminosity and that these outflows transfer similar to 0.04% of their mechanical power to gamma-rays. Interpreting the observed gamma-ray emission as produced by cosmic rays (CRs) accelerated at the shock front, we find that the gamma-ray emission may attest to the onset of the wind-host interaction and that these outflows can energize charged particles up to the transition region between galactic and extragalactic CRs.
  •  
25.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.
  •  
26.
  • Ajello, M., et al. (author)
  • First Fermi-LAT Solar Flare Catalog
  • 2021
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 252:2
  • Journal article (peer-reviewed)abstract
    • We present the first Fermi-Large Area Telescope (LAT) solar flare catalog covering the 24th solar cycle. This catalog contains 45 Fermi-LAT solar flares (FLSFs) with emission in the gamma-ray energy band (30 MeV-10 GeV) detected with a significance of >= 5 sigma over the years 2010-2018. A subsample containing 37 of these flares exhibits delayed emission beyond the prompt-impulsive hard X-ray phase, with 21 flares showing delayed emission lasting more than two hours. No prompt-impulsive emission is detected in four of these flares. We also present in this catalog observations of GeV emission from three flares originating from active regions located behind the limb of the visible solar disk. We report the lightcurves, spectra, best proton index, and localization (when possible) for all FLSFs. The gamma-ray spectra are consistent with the decay of pions produced by >300 MeV protons. This work contains the largest sample of high-energy gamma-ray flares ever reported and provides a unique opportunity to perform population studies on the different phases of the flare and thus allowing a new window in solar physics to be opened.
  •  
27.
  • Goddi, Ciriaco, et al. (author)
  • Polarimetric Properties of Event Horizon Telescope Targets from ALMA
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the lambda 3 mm and lambda 1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%-15%) and large rotation measures (RM > 10(3.3)-10(5.5) rad m(-2)), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (-4.2 0.3) x 10(5) rad m(-2) at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (-2.1 0.1) x 10(5) rad m(-2) at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from -1.2 to 0.3 x 10(5) rad m(-2) at 3 mm and -4.1 to 1.5 x 10(5) rad m(-2) at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA.
  •  
28.
  • Wielgus, Maciek, et al. (author)
  • Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) observed the compact radio source, Sagittarius A* (Sgr A*), in the Galactic Center on 2017 April 5-11 in the 1.3 mm wavelength band. At the same time, interferometric array data from the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array were collected, providing Sgr A* light curves simultaneous with the EHT observations. These data sets, complementing the EHT very long baseline interferometry, are characterized by a cadence and signal-to-noise ratio previously unattainable for Sgr A* at millimeter wavelengths, and they allow for the investigation of source variability on timescales as short as a minute. While most of the light curves correspond to a low variability state of Sgr A*, the April 11 observations follow an X-ray flare and exhibit strongly enhanced variability. All of the light curves are consistent with a red-noise process, with a power spectral density (PSD) slope measured to be between -2 and -3 on timescales between 1 minute and several hours. Our results indicate a steepening of the PSD slope for timescales shorter than 0.3 hr. The spectral energy distribution is flat at 220 GHz, and there are no time lags between the 213 and 229 GHz frequency bands, suggesting low optical depth for the event horizon scale source. We characterize Sgr A*'s variability, highlighting the different behavior observed just after the X-ray flare, and use Gaussian process modeling to extract a decorrelation timescale and a PSD slope. We also investigate the systematic calibration uncertainties by analyzing data from independent data reduction pipelines.
  •  
29.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication.
  •  
30.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n(e) similar to 10(4-7) cm(-3), magnetic field strength B similar to 1-30 G, and electron temperature T-e similar to (1-12) x 10(10) K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) x 10(-4) M yr(-1).
  •  
31.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present the first event-horizon-scale images and spatiotemporal analysis of Sgr A* taken with the Event Horizon Telescope in 2017 April at a wavelength of 1.3 mm. Imaging of Sgr A* has been conducted through surveys over a wide range of imaging assumptions using the classical CLEAN algorithm, regularized maximum likelihood methods, and a Bayesian posterior sampling method. Different prescriptions have been used to account for scattering effects by the interstellar medium toward the Galactic center. Mitigation of the rapid intraday variability that characterizes Sgr A* has been carried out through the addition of a "variability noise budget" in the observed visibilities, facilitating the reconstruction of static full-track images. Our static reconstructions of Sgr A* can be clustered into four representative morphologies that correspond to ring images with three different azimuthal brightness distributions and a small cluster that contains diverse nonring morphologies. Based on our extensive analysis of the effects of sparse (u, v)-coverage, source variability, and interstellar scattering, as well as studies of simulated visibility data, we conclude that the Event Horizon Telescope Sgr A* data show compelling evidence for an image that is dominated by a bright ring of emission with a ring diameter of similar to 50 mu as, consistent with the expected "shadow" of a 4 x 10(6) M (circle dot) black hole in the Galactic center located at a distance of 8 kpc.
  •  
32.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching similar to 100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 +/- 2.3 mu as (68% credible intervals), with the ring thickness constrained to have an FWHM between similar to 30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8(-0.7)(+1.4) mu as, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0(-0.6)(+1.1) x 10(6) M-circle dot.
  •  
33.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • In this paper we provide a first physical interpretation for the Event Horizon Telescope's (EHT) 2017 observations of Sgr A*. Our main approach is to compare resolved EHT data at 230 GHz and unresolved non-EHT observations from radio to X-ray wavelengths to predictions from a library of models based on time-dependent general relativistic magnetohydrodynamics simulations, including aligned, tilted, and stellar-wind-fed simulations; radiative transfer is performed assuming both thermal and nonthermal electron distribution functions. We test the models against 11 constraints drawn from EHT 230 GHz data and observations at 86 GHz, 2.2 mu m, and in the X-ray. All models fail at least one constraint. Light-curve variability provides a particularly severe constraint, failing nearly all strongly magnetized (magnetically arrested disk (MAD)) models and a large fraction of weakly magnetized models. A number of models fail only the variability constraints. We identify a promising cluster of these models, which are MAD and have inclination i <= 30 degrees. They have accretion rate (5.2-9.5) x 10(-9) M (circle dot) yr(-1), bolometric luminosity (6.8-9.2) x 10(35) erg s(-1), and outflow power (1.3-4.8) x 10(38) erg s(-1). We also find that all models with i >= 70 degrees fail at least two constraints, as do all models with equal ion and electron temperature; exploratory, nonthermal model sets tend to have higher 2.2 mu m flux density; and the population of cold electrons is limited by X-ray constraints due to the risk of bremsstrahlung overproduction. Finally, we discuss physical and numerical limitations of the models, highlighting the possible importance of kinetic effects and duration of the simulations.
  •  
34.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • Astrophysical black holes are expected to be described by the Kerr metric. This is the only stationary, vacuum, axisymmetric metric, without electromagnetic charge, that satisfies Einstein's equations and does not have pathologies outside of the event horizon. We present new constraints on potential deviations from the Kerr prediction based on 2017 EHT observations of Sagittarius A* (Sgr A*). We calibrate the relationship between the geometrically defined black hole shadow and the observed size of the ring-like images using a library that includes both Kerr and non-Kerr simulations. We use the exquisite prior constraints on the mass-to-distance ratio for Sgr A* to show that the observed image size is within similar to 10% of the Kerr predictions. We use these bounds to constrain metrics that are parametrically different from Kerr, as well as the charges of several known spacetimes. To consider alternatives to the presence of an event horizon, we explore the possibility that Sgr A* is a compact object with a surface that either absorbs and thermally reemits incident radiation or partially reflects it. Using the observed image size and the broadband spectrum of Sgr A*, we conclude that a thermal surface can be ruled out and a fully reflective one is unlikely. We compare our results to the broader landscape of gravitational tests. Together with the bounds found for stellar-mass black holes and the M87 black hole, our observations provide further support that the external spacetimes of all black holes are described by the Kerr metric, independent of their mass.
  •  
35.
  • Broderick, Avery E., et al. (author)
  • Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency.
  •  
36.
  • Issaoun, Sara, et al. (author)
  • Resolving the Inner Parsec of the Blazar J1924-2914 with the Event Horizon Telescope
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 934:2
  • Journal article (peer-reviewed)abstract
    • The blazar J1924-2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center's black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 mu as resolution of the EHT. J1924-2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5-11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86, 8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100 pc scales. We combine the multifrequency images of J1924-2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90 degrees between 2.3 and 230 GHz. Linearly polarized intensity images of J1924-2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core.
  •  
37.
  • Narayan, Ramesh, et al. (author)
  • The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 912:1
  • Journal article (peer-reviewed)abstract
    • Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker-Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images.
  •  
38.
  • Torne, Pablo, et al. (author)
  • A Search for Pulsars around Sgr A* in the First Event Horizon Telescope Data Set
  • 2023
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 959:1
  • Journal article (peer-reviewed)abstract
    • In 2017 the Event Horizon Telescope (EHT) observed the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz (lambda = 1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT data sets. The high observing frequency means that pulsars-which typically exhibit steep emission spectra-are expected to be very faint. However, it also negates pulse scattering, an effect that could hinder pulsar detections in the Galactic center. Additionally, magnetars or a secondary inverse Compton emission could be stronger at millimeter wavelengths than at lower frequencies. We present a search for pulsars close to Sgr A* using the data from the three most sensitive stations in the EHT 2017 campaign: the Atacama Large Millimeter/submillimeter Array, the Large Millimeter Telescope, and the IRAM 30 m Telescope. We apply three detection methods based on Fourier-domain analysis, the fast folding algorithm, and single-pulse searches targeting both pulsars and burst-like transient emission. We use the simultaneity of the observations to confirm potential candidates. No new pulsars or significant bursts were found. Being the first pulsar search ever carried out at such high radio frequencies, we detail our analysis methods and give a detailed estimation of the sensitivity of the search. We conclude that the EHT 2017 observations are only sensitive to a small fraction (less than or similar to 2.2%) of the pulsars that may exist close to Sgr A*, motivating further searches for fainter pulsars in the region.
  •  
39.
  • Farah, Joseph, et al. (author)
  • Selective Dynamical Imaging of Interferometric Data
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set.
  •  
40.
  • Jorstad, S.G., et al. (author)
  • The Event Horizon Telescope Image of the Quasar NRAO 530
  • 2023
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 943:2
  • Journal article (peer-reviewed)abstract
    • We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5-7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of similar to 20 mu as, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of similar to 5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 mu as along a position angle similar to -28 degrees. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin.
  •  
41.
  • Satapathy, Kaushik, et al. (author)
  • The Variability of the Black Hole Image in M87 at the Dynamical Timescale
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 925:1
  • Journal article (peer-reviewed)abstract
    • The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5-61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of similar to 3 degrees-5 degrees. The only triangles that exhibit substantially higher variability (similar to 90 degrees-180 degrees) are the ones with baselines that cross the visibility amplitude minima on the u-v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.
  •  
42.
  • Gurvits, L. I., et al. (author)
  • The science case and challenges of spaceborne sub-millimeter interferometry: the study case of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA)
  • 2021
  • In: Proceedings of the International Astronautical Congress, IAC. - 0074-1795. ; A7
  • Conference paper (peer-reviewed)abstract
    • Ultra-high angular resolution in astronomy has always been an important vehicle for making fundamental discoveries. Recent results in direct imaging of the vicinity of the super-massive black hole in the nucleus of the radio galaxy M87 by the millimeter VLBI system Event Horizon Telescope (EHT) and various pioneering results of the Space VLBI mission RadioAstron provided new momentum in high angular resolution astrophysics. In both mentioned cases, the angular resolution reached the values of about 10−20 microrcseconds (0.05−0.1 nanoradian). Angular resolution is proportional to the observing wavelength and inversely proportional to the interferometer baseline length. In the case of Earth-based EHT, the highest angular resolution was achieved by combining the shortest possible wavelength of 1.3 mm with the longest possible baselines, comparable to the Earth’s diameter. For RadioAstron, operational wavelengths were in the range from 92 cm down to 1.3 cm, but the baselines were as long as ∼350,000 km. However, these two highlights of radio astronomy, EHT and RadioAstron do not”saturate” the interest to further increase in angular resolution. Quite opposite: the science case for further increase in angular resolution of astrophysical studies becomes even stronger. A natural and, in fact, the only possible way of moving forward is to enhance mm/sub-mm VLBI by extending baselines to extraterrestrial dimensions, i.e. creating a mm/sub-mm Space VLBI system. The inevitable move toward space-borne mm/sub-mm VLBI is a subject of several concept studies. In this presentation we will focus on one of them called TeraHertz Exploration and Zooming-in for Astrophysics (THEZA), prepared in response to the ESA’s call for its next major science program Voyage 2050 (Gurvits et al. 2021). The THEZA rationale is focused at the physics of spacetime in the vicinity of super-massive black holes as the leading science drive. However, it will also open up a sizable new range of hitherto unreachable parameters of observational radio astrophysics and create a multi-disciplinary scientific facility and offer a high degree of synergy with prospective “single dish” space-borne sub-mm astronomy (e.g., Wiedner et al. 2021) and infrared interferometry (e.g., Linz et al. 2021). As an amalgam of several major trends of modern observational astrophysics, THEZA aims at facilitating a breakthrough in high-resolution high image quality astronomical studies.
  •  
43.
  • Wielgus, Maciek, et al. (author)
  • Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 901:1
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature-a ring with azimuthal brightness asymmetry-and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009-2017 to be consistent with a persistent asymmetric ring of similar to 40 mu as diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin.
  •  
44.
  •  
45.
  • Psaltis, Dimitrios, et al. (author)
  • Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole
  • 2020
  • In: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 125:14
  • Journal article (peer-reviewed)abstract
    • The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.
  •  
46.
  •  
47.
  • Haas, SS, et al. (author)
  • Normative modeling of brain morphometry in Clinical High-Risk for Psychosis
  • 2023
  • In: bioRxiv : the preprint server for biology. - : Cold Spring Harbor Laboratory.
  • Journal article (other academic/artistic)abstract
    • ImportanceThe lack of robust neuroanatomical markers of psychosis risk has been traditionally attributed to heterogeneity. A complementary hypothesis is that variation in neuroanatomical measures in the majority of individuals at psychosis risk may be nested within the range observed in healthy individuals.ObjectiveTo quantify deviations from the normative range of neuroanatomical variation in individuals at clinical high-risk for psychosis (CHR-P) and evaluate their overlap with healthy variation and their association with positive symptoms, cognition, and conversion to a psychotic disorder.Design, Setting, and ParticipantsClinical, IQ and FreeSurfer-derived regional measures of cortical thickness (CT), cortical surface area (SA), and subcortical volume (SV) from 1,340 CHR-P individuals [47.09% female; mean age: 20.75 (4.74) years] and 1,237 healthy individuals [44.70% female; mean age: 22.32 (4.95) years] from 29 international sites participating in the ENIGMA Clinical High Risk for Psychosis Working Group.Main Outcomes and MeasuresFor each regional morphometric measure, z-scores were computed that index the degree of deviation from the normative means of that measure in a healthy reference population (N=37,407). Average deviation scores (ADS) for CT, SA, SV, and globally across all measures (G) were generated by averaging the respective regional z-scores. Regression analyses were used to quantify the association of deviation scores with clinical severity and cognition and two-proportion z-tests to identify case-control differences in the proportion of individuals with infranormal (z<-1.96) or supranormal (z>1.96) scores.ResultsCHR-P and healthy individuals overlapped in the distributions of the observed values, regional z-scores, and all ADS vales. The proportion of CHR-P individuals with infranormal or supranormal values in any metric was low (<12%) and similar to that of healthy individuals. CHR-P individuals who converted to psychosis compared to those who did not convert had a higher percentage of infranormal values in temporal regions (5-7% vs 0.9-1.4%). In the CHR-P group, only the ADSSAshowed significant but weak associations (|β|<0.09; PFDR<0.05) with positive symptoms and IQ.Conclusions and RelevanceThe study findings challenge the usefulness of macroscale neuromorphometric measures as diagnostic biomarkers of psychosis risk and suggest that such measures do not provide an adequate explanation for psychosis risk.Key pointsQuestionIs the risk of psychosis associated with brain morphometric changes that deviate significantly from healthy variation?FindingsIn this study of 1340 individuals high-risk for psychosis (CHR-P) and 1237 healthy participants, individual-level variation in macroscale neuromorphometric measures of the CHR-P group was largely nested within healthy variation and was not associated with the severity of positive psychotic symptoms or conversion to a psychotic disorder.MeaningThe findings suggest the macroscale neuromorphometric measures have limited utility as diagnostic biomarkers of psychosis risk.
  •  
48.
  • Marinucci, A., et al. (author)
  • Polarization constraints on the X-ray corona in Seyfert Galaxies : MCG-05-23-16
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:4, s. 5907-5913
  • Journal article (peer-reviewed)abstract
    • We report on the first observation of a radio-quiet active galactic nucleus (AGN) in polarized X-rays: the Seyfert 1.9 galaxy MCG-05-23-16. This source was pointed at with the Imaging X-ray Polarimetry Explorer (IXPE) starting on 2022 May 14 for a net observing time of 486 ks, simultaneously with XMM-Newton (58 ks) and NuSTAR (83 ks). A polarization degree Π smaller than 4.7 per cent (at the 99 per cent confidence level) is derived in the 2–8 keV energy range, where emission is dominated by the primary component ascribed to the hot corona. The broad-band spectrum, inferred from a simultaneous fit to the IXPE, NuSTAR, and XMM-Newton data, is well reproduced by a power law with photon index Γ = 1.85 ± 0.01 and a high-energy cutoff EC = 120 ± 15 keV. A comparison with Monte Carlo simulations shows that a lamp-post and a conical geometry of the corona are consistent with the observed upper limit, a slab geometry is allowed only if the inclination angle of the system is less than 50°.
  •  
49.
  •  
50.
  • Broderick, Avery E., et al. (author)
  • The Photon Ring in M87*
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 935:1
  • Journal article (peer-reviewed)abstract
    • We report measurements of the gravitationally lensed secondary image—the first in an infinite series of so-called “photon rings”—around the supermassive black hole M87* via simultaneous modeling and imaging of the 2017 Event Horizon Telescope (EHT) observations. The inferred ring size remains constant across the seven days of the 2017 EHT observing campaign and is consistent with theoretical expectations, providing clear evidence that such measurements probe spacetime and a striking confirmation of the models underlying the first set of EHT results. The residual diffuse emission evolves on timescales comparable to one week. We are able to detect with high significance a southwestern extension consistent with that expected from the base of a jet that is rapidly rotating in the clockwise direction. This result adds further support to the identification of the jet in M87* with a black hole spin-driven outflow, launched via the Blandford-Znajek process. We present three revised estimates for the mass of M87* based on identifying the modeled thin ring component with the bright ringlike features seen in simulated images, one of which is only weakly sensitive to the astrophysics of the emission region. All three estimates agree with each other and previously reported values. Our strongest mass constraint combines information from both the ring and the diffuse emission region, which together imply a mass-to-distance ratio of 4.20 − 0.06 + 0.12 μ as and a corresponding black hole mass of (7.13 ± 0.39) × 109 M ⊙, where the error on the latter is now dominated by the systematic uncertainty arising from the uncertain distance to M87*.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 58
Type of publication
journal article (56)
conference paper (1)
research review (1)
Type of content
peer-reviewed (56)
other academic/artistic (2)
Author/Editor
Mizuno, Yosuke (34)
Davelaar, Jordy (33)
Fromm, Christian M. (33)
Lindqvist, Michael, ... (33)
Liuzzo, Elisabetta (33)
Rezzolla, Luciano (33)
show more...
Conway, John, 1963 (32)
Britzen, Silke (31)
Chen, Yongjun (31)
Cui, Yuzhu (31)
James, David J. (31)
Koay, Jun Yi (31)
Lee, Sang Sung (31)
Moran, James M. (31)
Pietu, Vincent (31)
Kim, Jae-Young (30)
Akiyama, Kazunori (30)
Alberdi, Antxon (30)
Alef, Walter (30)
Barrett, John (30)
Bintley, Dan (30)
Blackburn, Lindy (30)
Brissenden, Roger (30)
Broderick, Avery E. (30)
Bronzwaer, Thomas (30)
Chen, Ming Tang (30)
Desvignes, Gregory (30)
Eatough, Ralph P. (30)
Galison, Peter (30)
Gammie, Charles F. (30)
Gentaz, Olivier (30)
Gu, Minfeng (30)
Ho, Luis C. (30)
Inoue, Makoto (30)
Jeter, Britton (30)
Jung, Taehyun (30)
Kawashima, Tomohisa (30)
Koyama, Shoko (30)
Li, Zhiyuan (30)
Lo, Wen-Ping (30)
Mao, Jirong (30)
Mizuno, Izumi (30)
Moriyama, Kotaro (30)
Natarajan, Iniyan (30)
Ni, Chunchong (30)
Okino, Hiroki (30)
Pesce, Dominic W. (30)
PopStefanija, Aleksa ... (30)
Ramakrishnan, Venkat ... (30)
Raymond, Alexander W ... (30)
show less...
University
Chalmers University of Technology (35)
Royal Institute of Technology (14)
Stockholm University (12)
Högskolan Dalarna (11)
Karolinska Institutet (8)
Lund University (4)
show more...
Linnaeus University (2)
University of Gothenburg (1)
Umeå University (1)
Uppsala University (1)
Linköping University (1)
show less...
Language
English (58)
Research subject (UKÄ/SCB)
Natural sciences (48)
Engineering and Technology (10)
Medical and Health Sciences (6)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view