SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mukherjee Soham) srt2:(2020)"

Search: WFRF:(Mukherjee Soham) > (2020)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Phuyal, Dibya, et al. (author)
  • Origin of itinerant carriers in antiferromagnetic LaFe1-xMoxO3 studied by x-ray spectroscopies
  • 2020
  • In: Physical Review Materials. - 2475-9953. ; 4:3
  • Journal article (peer-reviewed)abstract
    • We report on the electronic structure of doped LaFeO3 at the crossover from an insulating-to-metallic phase transition. Comprehensive x-ray spectroscopic methodologies are used to understand core and valence electronic structure as well as crystal structure distortions associated with the electronic transition. Despite the antiferromagnetic (AFM) ordering at room temperature, we show direct evidence of itinerant carriers at the Fermi level revealed by resonant photoemission spectroscopy (RPES) at the Mo L3 edge. RPES data taken at the Fe L3 edge show spectral weight near the valence band edge and significant hybridization with O 2p states required for AFM ordering. Resonant inelastic x-ray scattering spectra taken across Fe L2,3 edges show electron correlation effects (U) driven by Coulomb interactions of d electrons as well as broad charge-transfer excitations for x≥0.2 where the compound crosses over to a metallic state. Site substitution of Fe by Mo ions in the Fe-O6 octahedra enhances the separation of the two Fe-O bonds and Fe-O-Fe bonding angles relative to the orthorhombic LaFeO3, but no considerable distortions are present to the overall structure. Mo ions appear to be homogeneously doped, with average valency of both metal sites monotonically decreasing with increasing Mo concentration. This insulator-to-metal phase transition with AFM stability is primarily understood through intermediate interaction strengths between correlation (U) and bandwidth (W) at the Fe site, where an estimation of this ratio is given. These results highlight the important role of extrinsic carriers in stabilizing a unique phase transition that can guide future efforts in antiferromagnetic-metal spintronics.
  •  
2.
  • Zhu, Huimin, et al. (author)
  • Tuning the Bandgap in Silver Bismuth Iodide Materials by Partly Substituting Bismuth with Antimony for Improved Solar Cell Performance
  • 2020
  • In: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 3:8, s. 7372-7382
  • Journal article (peer-reviewed)abstract
    • Silver bismuth iodide (Ag–Bi–I) light absorbers are interesting candidates as lead-free and low-toxic metal-halide materials for solar cell applications. In this work, the partial exchange of bismuth, Bi, with antimony, Sb, is investigated in samples prepared from a solution targeting stoichiometry AgBi2I7. Samples with a gradually increased exchange of Bi by Sb are prepared and light absorption measurements show that the absorption edge is gradually blue-shifted with increasing the amount of Sb. This trend in the shift in combination with the X-ray diffraction and X-ray photoelectron spectroscopy measurements, suggest that new materials with a mixture of Sb and Bi are formed. The density functional theory based electronic structure calculations reproduce the trend observed in the experiments when including spin–orbit coupling, which indicates the importance of relativistic effects in these materials. X-ray photoelectron spectroscopy is used to characterize the materials, and confirms the exchange of Bi to Sb in the samples. When Sb is included in the material, the grain size changes between 50 and 200 nm and the solar cell performance also changes. An optimal power conversion efficiency with excellent reproducibility and stability is obtained for a solar cell with the ratio of Sb/Bi equal to 3.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view