SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Neto Pedro R.) srt2:(2015-2019)"

Search: WFRF:(Neto Pedro R.) > (2015-2019)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Schuettpelz, Eric, et al. (author)
  • A community-derived classification for extant lycophytes and ferns
  • 2016
  • In: Journal of Systematics and Evolution. - : Wiley. - 1674-4918 .- 1759-6831. ; 54:6, s. 563-603
  • Journal article (peer-reviewed)abstract
    • Phylogeny has long informed pteridophyte classification. As our ability to infer evolutionary trees has improved, classifications aimed at recognizing natural groups have become increasingly predictive and stable. Here, we provide a modern, comprehensive classification for lycophytes and ferns, down to the genus level, utilizing a community-based approach. We use monophyly as the primary criterion for the recognition of taxa, but also aim to preserve existing taxa and circumscriptions that are both widely accepted and consistent with our understanding of pteridophyte phylogeny. In total, this classification treats an estimated 11 916 species in 337 genera, 51 families, 14 orders, and two classes. This classification is not intended as the final word on lycophyte and fern taxonomy, but rather a summary statement of current hypotheses, derived from the best available data and shaped by those most familiar with the plants in question. We hope that it will serve as a resource for those wanting references to the recent literature on pteridophyte phylogeny and classification, a framework for guiding future investigations, and a stimulus to further discourse.
  •  
3.
  • Lleó, Alberto, et al. (author)
  • Longitudinal cerebrospinal fluid biomarker trajectories along the Alzheimer's disease continuum in the BIOMARKAPD study
  • 2019
  • In: Alzheimer's & Dementia. - : Elsevier. - 1552-5260 .- 1552-5279. ; 15:6, s. 742-753
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Within-person trajectories of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) are not well defined.METHODS: We included 467 subjects from the BIOMARKAPD study with at least two serial CSF samples. Diagnoses were subjective cognitive decline (n = 75), mild cognitive impairment (n = 128), and AD dementia (n = 110), and a group of cognitively unimpaired subjects (n = 154) were also included. We measured baseline and follow-up CSF levels of total tau (t-tau), phosphorylated tau (p-tau), YKL-40, and neurofilament light (NfL). Median CSF sampling interval was 2.1 years.RESULTS: CSF levels of t-tau, p-tau, NfL, and YKL-40 were 2% higher per each year of baseline age in controls (P <.001). In AD, t-tau levels were 1% lower (P <.001) and p-tau levels did not change per each year of baseline age. Longitudinally, only NfL (P <.001) and YKL-40 (P <.02) increased during the study period.DISCUSSION: All four CSF biomarkers increase with age, but this effect deviates in AD for t-tau and p-tau.
  •  
4.
  • Poorter, Lourens, et al. (author)
  • Wet and dry tropical forests show opposite successional pathways in wood density but converge over time
  • 2019
  • In: Nature Ecology & Evolution. - : Nature Publishing Group. - 2397-334X. ; 3:6, s. 928-934
  • Journal article (peer-reviewed)abstract
    • Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using 1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in community composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values), in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (conservative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional environments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.
  •  
5.
  • Benedet, Andréa L., et al. (author)
  • Plasma neurofilament light associates with Alzheimer's disease metabolic decline in amyloid-positive individuals
  • 2019
  • In: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 11, s. 679-689
  • Journal article (peer-reviewed)abstract
    • Introduction: Neurofilament light chain (NfL) is a promising blood biomarker to detect neurodegeneration in Alzheimer's disease (AD) and other brain disorders. However, there are limited reports of how longitudinal NfL relates to imaging biomarkers. We herein investigated the relationship between blood NfL and brain metabolism in AD. Methods: Voxelwise regression models tested the cross-sectional association between [18F]fluorodeoxyglucose ([18F]FDG) and both plasma and cerebrospinal fluid NfL in cognitively impaired and unimpaired subjects. Linear mixed models were also used to test the longitudinal association between NfL and [18F]FDG in amyloid positive (Aβ+) and negative (Aβ−) subjects. Results: Higher concentrations of plasma and cerebrospinal fluid NfL were associated with reduced [18F]FDG uptake in correspondent brain regions. In Aβ+ participants, NfL associates with hypometabolism in AD-vulnerable regions. Longitudinal changes in the association [18F]FDG-NfL were confined to cognitively impaired Aβ+ individuals. Discussion: These findings indicate that plasma NfL is a proxy for neurodegeneration in AD-related regions in Aβ+ subjects.
  •  
6.
  • Catry, Paulo, et al. (author)
  • Provenance does matter : links between winter trophic segregation and the migratory origins of European robins
  • 2016
  • In: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 182:4, s. 985-994
  • Journal article (peer-reviewed)abstract
    • Amongst migratory species, it is common to find individuals from different populations or geographical origins sharing staging or wintering areas. Given their differing life histories, ecological theory would predict that the different groups of individuals should exhibit some level of niche segregation. This has rarely been investigated because of the difficulty in assigning migrating individuals to breeding areas. Here, we start by documenting a broad geographical gradient of hydrogen isotopes (δ2H) in robin Erithacus rubecula feathers across Europe. We then use δ2H, as well as wing-tip shape, as surrogates for broad migratory origin of birds wintering in Iberia, to investigate the ecological segregation of populations. Wintering robins of different sexes, ages and body sizes are known to segregate between habitats in Iberia. This has been attributed to the despotic exclusion of inferior competitors from the best patches by dominant individuals. We find no segregation between habitats in relation to δ2H in feathers, or to wing-tip shape, which suggests that no major asymmetries in competitive ability exist between migrant robins of different origins. Trophic level (inferred from nitrogen isotopes in blood) correlated both with δ2H in feathers and with wing-tip shape, showing that individuals from different geographic origins display a degree of ecological segregation in shared winter quarters. Isotopic mixing models indicate that wintering birds originating from more northerly populations consume more invertebrates. Our multi-scale study suggests that trophic-niche segregation may result from specializations (arising in the population-specific breeding areas) that are transported by the migrants into the shared wintering grounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view