SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ning Feng) srt2:(2020-2024)"

Search: WFRF:(Ning Feng) > (2020-2024)

  • Result 1-50 of 54
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
3.
  • Jin, Ying-Hui, et al. (author)
  • Chemoprophylaxis, diagnosis, treatments, and discharge management of COVID-19 : An evidence-based clinical practice guideline (updated version)
  • 2020
  • In: Military Medical Research. - : Springer Science and Business Media LLC. - 2054-9369. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, coronavirus disease 2019 (COVID-19), affecting more than seventeen million people around the world. Diagnosis and treatment guidelines for clinicians caring for patients are needed. In the early stage, we have issued "A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)"; now there are many direct evidences emerged and may change some of previous recommendations and it is ripe for develop an evidence-based guideline. We formed a working group of clinical experts and methodologists. The steering group members proposed 29 questions that are relevant to the management of COVID-19 covering the following areas: chemoprophylaxis, diagnosis, treatments, and discharge management. We searched the literature for direct evidence on the management of COVID-19, and assessed its certainty generated recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Recommendations were either strong or weak, or in the form of ungraded consensus-based statement. Finally, we issued 34 statements. Among them, 6 were strong recommendations for, 14 were weak recommendations for, 3 were weak recommendations against and 11 were ungraded consensus-based statement. They covered topics of chemoprophylaxis (including agents and Traditional Chinese Medicine (TCM) agents), diagnosis (including clinical manifestations, reverse transcription-polymerase chain reaction (RT-PCR), respiratory tract specimens, IgM and IgG antibody tests, chest computed tomography, chest x-ray, and CT features of asymptomatic infections), treatments (including lopinavir-ritonavir, umifenovir, favipiravir, interferon, remdesivir, combination of antiviral drugs, hydroxychloroquine/chloroquine, interleukin-6 inhibitors, interleukin-1 inhibitors, glucocorticoid, qingfei paidu decoction, lianhua qingwen granules/capsules, convalescent plasma, lung transplantation, invasive or noninvasive ventilation, and extracorporeal membrane oxygenation (ECMO)), and discharge management (including discharge criteria and management plan in patients whose RT-PCR retesting shows SARS-CoV-2 positive after discharge). We also created two figures of these recommendations for the implementation purpose. We hope these recommendations can help support healthcare workers caring for COVID-19 patients.
  •  
4.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
5.
  • Wang, Ning Ning, et al. (author)
  • Certification of non-classicality in all links of a photonic star network without assuming quantum mechanics
  • 2023
  • In: Nature Communications. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Networks composed of independent sources of entangled particles that connect distant users are a rapidly developing quantum technology and an increasingly promising test-bed for fundamental physics. Here we address the certification of their post-classical properties through demonstrations of full network nonlocality. Full network nonlocality goes beyond standard nonlocality in networks by falsifying any model in which at least one source is classical, even if all the other sources are limited only by the no-signaling principle. We report on the observation of full network nonlocality in a star-shaped network featuring three independent sources of photonic qubits and joint three-qubit entanglement-swapping measurements. Our results demonstrate that experimental observation of full network nonlocality beyond the bilocal scenario is possible with current technology.
  •  
6.
  • Wu, Bo, et al. (author)
  • Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite
  • 2021
  • In: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 7:8
  • Journal article (peer-reviewed)abstract
    • Bismuth-based double perovskite Cs2AgBiBr6 is regarded as a potential candidate for low-toxicity, high-stability perovskite solar cells. However, its performance is far from satisfactory. Albeit being an indirect bandgap semiconductor, we observe bright emission with large bimolecular recombination coefficient (reaching 4.5 +/- 0.1 x 10(-11) cm(3) s(-1)) and low charge carrier mobility (around 0.05 cm(2) s(-1) V-1). Besides intermediate Frohlich couplings present in both Pb-based perovskites and Cs2AgBiBr6, we uncover evidence of strong deformation potential by acoustic phonons in the latter through transient reflection, time-resolved terahertz measurements, and density functional theory calculations. The Frohlich and deformation potentials synergistically lead to ultrafast self-trapping of free carriers forming polarons highly localized on a few units of the lattice within a few picoseconds, which also breaks down the electronic band picture, leading to efficient radiative recombination. The strong self-trapping in Cs2AgBiBr6 could impose intrinsic limitations for its application in photovoltaics.
  •  
7.
  • Ji, Fuxiang, et al. (author)
  • Lead-Free Halide Double Perovskite Cs2AgBiBr6 with Decreased Band Gap
  • 2020
  • In: Angewandte Chemie International Edition. - : Wiley-VCH Verlag. - 1433-7851 .- 1521-3773. ; 59:35, s. 15191-15194
  • Journal article (peer-reviewed)abstract
    • Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high-efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal-engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band-gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first-principles calculations indicate that enhanced Ag/Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band-gap narrowing effect. This work provides new insights for achieving lead-free double perovskites with suitable band gaps for optoelectronic applications. 
  •  
8.
  • Ji, Fuxiang, 1991-, et al. (author)
  • Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6
  • 2023
  • In: Advanced Optical Materials. - : Wiley-Blackwell. - 2162-7568 .- 2195-1071.
  • Journal article (peer-reviewed)abstract
    • Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron–phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK−1 based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III–V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.
  •  
9.
  • Ji, Fuxiang, 1991-, et al. (author)
  • Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6
  • 2024
  • In: Advanced Optical Materials. - : John Wiley & Sons. - 2162-7568 .- 2195-1071. ; 12:8
  • Journal article (peer-reviewed)abstract
    • Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron-phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK(-1) based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III-V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.
  •  
10.
  • Ji, Fuxiang, et al. (author)
  • The atomic-level structure of bandgap engineered double perovskite alloys Cs2AgIn1-xFexCl6
  • 2021
  • In: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 12:5, s. 1730-1735
  • Journal article (peer-reviewed)abstract
    • Although lead-free halide double perovskites are considered as promising alternatives to lead halide perovskites for optoelectronic applications, state-of-the-art double perovskites are limited by their large bandgap. The doping/alloying strategy, key to bandgap engineering in traditional semiconductors, has also been employed to tune the bandgap of halide double perovskites. However, this strategy has yet to generate new double perovskites with suitable bandgaps for practical applications, partially due to the lack of fundamental understanding of how the doping/alloying affects the atomic-level structure. Here, we take the benchmark double perovskite Cs2AgInCl6 as an example to reveal the atomic-level structure of double perovskite alloys (DPAs) Cs2AgIn1-xFexCl6 (x = 0-1) by employing solid-state nuclear magnetic resonance (ssNMR). The presence of paramagnetic alloying ions (e.g. Fe3+ in this case) in double perovskites makes it possible to investigate the nuclear relaxation times, providing a straightforward approach to understand the distribution of paramagnetic alloying ions. Our results indicate that paramagnetic Fe3+ replaces diamagnetic In3+ in the Cs2AgInCl6 lattice with the formation of [FeCl6](3-)center dot[AgCl6](5-) domains, which show different sizes and distribution modes in different alloying ratios. This work provides new insights into the atomic-level structure of bandgap engineered DPAs, which is of critical significance in developing efficient optoelectronic/spintronic devices.
  •  
11.
  • Lin, Xihong, et al. (author)
  • Effect of alloying on the dynamics of coherent acoustic phonons in bismuth double perovskite single crystals
  • 2021
  • In: Optics Express. - : Optical Society of America. - 1094-4087. ; 29:5, s. 7948-7955
  • Journal article (peer-reviewed)abstract
    • The bismuth double perovskite Cs2AgBiBr6 has been regarded as a potential candidate for lead-free perovskite photovoltaics. A detailed study on the coherent acoustic phonon dynamics in the pure, Sb- and T1-alloyed Cs2AgBiBr6 single crystals is performed to understand the effects of alloying on the phonon dynamics and band edge characteristics. The coherent acoustic phonon frequencies are found to be independent of the alloying, while the damping rates are highly dependent on the alloying. Based on the mechanism of coherent acoustic phonon damping, a technique has been successfully developed that can accurately extract the absorption spectra near the indirect band gap for these single crystals with coefficients on the order of 10(2) cm(-1). (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
  •  
12.
  • Berntell, Ellen, et al. (author)
  • Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble
  • 2021
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:4, s. 1777-1794
  • Journal article (peer-reviewed)abstract
    • The mid-Pliocene warm period (mPWP; ∼3.2 million years ago) is seen as the most recent time period characterized by a warm climate state, with similar to modern geography and ∼400 ppmv atmospheric CO2 concentration, and is therefore often considered an interesting analogue for near-future climate projections. Paleoenvironmental reconstructions indicate higher surface temperatures, decreasing tropical deserts, and a more humid climate in West Africa characterized by a strengthened West African Monsoon (WAM). Using model results from the second phase of the Pliocene Modelling Intercomparison Project (PlioMIP2) ensemble, we analyse changes of the WAM rainfall during the mPWP by comparing them with the control simulations for the pre-industrial period. The ensemble shows a robust increase in the summer rainfall over West Africa and the Sahara region, with an average increase of 2.5 mm/d, contrasted by a rainfall decrease over the equatorial Atlantic. An anomalous warming of the Sahara and deepening of the Saharan Heat Low, seen in >90 % of the models, leads to a strengthening of the WAM and an increased monsoonal flow into the continent. A similar warming of the Sahara is seen in future projections using both phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Though previous studies of future projections indicate a west–east drying–wetting contrast over the Sahel, PlioMIP2 simulations indicate a uniform rainfall increase in that region in warm climates characterized by increasing greenhouse gas forcing. We note that this effect will further depend on the long-term response of the vegetation to the CO2 forcing.
  •  
13.
  • Chai, Jiali, et al. (author)
  • Insights on Titanium-based chalcogenides TiX2 (X = O, S, Se) as LIBs/SIBs anode materials
  • 2023
  • In: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 453
  • Research review (peer-reviewed)abstract
    • Ti-based chalcogenides TiX2 (X = O, S, Se) are widely used in the research of battery electrode materials due to its excellent rate performance and good chemical stability. In this paper, in order to improve the electrochemical performance of lithium-ion batteries (LIBs) and sodium ion batteries (SIBs), and further improve the application prospect of batteries, the strategies for design and preparation of LIBs/SIBs anode materials for Ti-based chalcogenides TiX2 (X = O, S, Se) are reviewed. The effects of the internal morphology modification, surface structure vacancy and composite with other material of TiX2 (X = O, S, Se) as LIBs/SIBs anode materials are analyzed in detail. On this basis, the application prospect of TiX2 (X = O, S, Se) as LIBs/SIBs anode is prospected, it is expected to fill the research of diversified applications of LIBs/SIBs anode materials.
  •  
14.
  • Cui, Weiyingqi, et al. (author)
  • High expression of cytoplasmic FOXO3 protein associated with poor prognosis of rectal cancer patients : A study from Swedish clinical trial of preoperative radiotherapy to big database analysis
  • 2023
  • In: Heliyon. - : Elsevier. - 2405-8440. ; 9:5
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Accumulating evidence has implicated a pivotal role for FOXO3, FOXM1 and SIRT6 in cancer progression. The majority of researches focused on the functions of these proteins in drug resistance, but their relationships with radiotherapy (RT) response remain unclear. In this study, we examined protein expression of FOXO3, FOXM1 and SIRT6 and their clinical significance in a Swedish rectal cancer trial of preoperative RT.METHODS: Expression of FOXO3, FOXM1 and SIRT6 protein was examined by immunohistochemistry in patient samples. Genetic analysis of FOXO3, FOXM1 and SIRT6 were performed by cBioportal and MEXPRESS database. Gene-gene network analysis was conducted using GeneMANIA. Functional enrichment analysis was performed based on LinkedOmics and Metascape online software.RESULTS: FOXO3 and FOXM1were mainly expressed in the cytoplasm in both normal and tumour tissues, and SIRT6 in both the cytoplasm and nucleus in normal and tumour tissues. FOXO3 and FOXM1 expression increased from normal mucosa to primary cancer (P < 0.001), while SIRT6 expression decreased from normal mucosa to primary cancer (P < 0.001). High FOXO3 expression correlated with late TNM stage (P = 0.040), distant metastasis (P = 0.032) and independently with disease free survival (DFS) in the RT patients (HR = 7.948; P = 0.049; 95% CI = 1.002-63.032) but not in non-RT patients (P > 0.05). Genetic analysis indicated that DNA methylation status contributed to FOXO3 overexpression. Functional enrichment analysis demonstrated that FOXO3 was closely related to metabolism-related signalling pathway which in turn associated with cancer radioresistance. Moreover, there were strong gene-gene interactions between FOXO3 and metabolism-related signalling.CONCLUSIONS: Our findings suggest that FOXO3 may be a prognostic factor in rectal cancer patients with RT.
  •  
15.
  • de Nooijer, Wesley, et al. (author)
  • Evaluation of Arctic warming in mid-Pliocene climate simulations
  • 2020
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:6, s. 2325-2341
  • Journal article (peer-reviewed)abstract
    • Palaeoclimate simulations improve our understanding of the climate, inform us about the performance of climate models in a different climate scenario, and help to identify robust features of the climate system. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), derived from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The PlioMIP2 ensemble simulates Arctic (60-90 degrees N) annual mean surface air temperature (SAT) increases of 3.7 to 11.6 degrees C compared to the pre-industrial period, with a multimodel mean (MMM) increase of 7.2 degrees C. The Arctic warming amplification ratio relative to global SAT anomalies in the ensemble ranges from 1.8 to 3.1 (MMM is 2.3). Sea ice extent anomalies range from -3.0 to -10.4 x 10(6) km(2), with a MMM anomaly of -5.6 x 10 6 km(2), which constitutes a decrease of 53 % compared to the pre-industrial period. The majority (11 out of 16) of models simulate summer seaice-free conditions (<= 1 x 10(6) km(2)) in their mPWP simulation. The ensemble tends to underestimate SAT in the Arctic when compared to available reconstructions, although the degree of underestimation varies strongly between the simulations. The simulations with the highest Arctic SAT anomalies tend to match the proxy dataset in its current form better. The ensemble shows some agreement with reconstructions of sea ice, particularly with regard to seasonal sea ice. Large uncertainties limit the confidence that can be placed in the findings and the compatibility of the different proxy datasets. We show that while reducing uncertainties in the reconstructions could decrease the SAT data-model discord substantially, further improvements are likely to be found in enhanced boundary conditions or model physics. Lastly, we compare the Arctic warming in the mPWP to projections of future Arctic warming and find that the PlioMIP2 ensemble simulates greater Arctic amplification than CMIP5 future climate simulations and an increase instead of a decrease in Atlantic Meridional Overturning Circulation (AMOC) strength compared to pre-industrial period. The results highlight the importance of slow feedbacks in equilibrium climate simulations, and that caution must be taken when using simulations of the mPWP as an analogue for future climate change.
  •  
16.
  • Feng, Ran, et al. (author)
  • Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Despite tectonic conditions and atmospheric CO2 levels (pCO2) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO2. Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO2 forcing.
  •  
17.
  •  
18.
  • Guo, Di, et al. (author)
  • Cholecystokinin-like peptide mediates satiety by inhibiting sugar attraction
  • 2021
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:8
  • Journal article (peer-reviewed)abstract
    • Feeding is essential for animal survival and reproduction and is regulated by both internal states and external stimuli. However, little is known about how internal states influence the perception of external sensory cues that regulate feeding behavior. Here, we investigated the neuronal and molecular mechanisms behind nutritional state-mediated regulation of gustatory perception in control of feeding behavior in the brown planthopper and Drosophila. We found that feeding increases the expression of the cholecystokinin-like peptide, sulfakinin (SK), and the activity of a set of SK-expressing neurons. Starvation elevates the transcription of the sugar receptor Gr64f and SK negatively regulates the expression of Gr64f in both insects. Interestingly, we found that one of the two known SK receptors, CCKLR-17D3, is expressed by some of Gr64f-expressing neurons in the proboscis and proleg tarsi. Thus, we have identified SK as a neuropeptide signal in a neuronal circuitry that responds to food intake, and regulates feeding behavior by diminishing gustatory receptor gene expression and activity of sweet sensing GRNs. Our findings demonstrate one nutritional state-dependent pathway that modulates sweet perception and thereby feeding behavior, but our experiments cannot exclude further parallel pathways. Importantly, we show that the underlying mechanisms are conserved in the two distantly related insect species.
  •  
19.
  • Guo, Donglin, et al. (author)
  • Highly restricted near-surface permafrost extent during the mid-Pliocene warm period
  • 2023
  • In: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 120:36
  • Journal article (peer-reviewed)abstract
    • Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth's past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near-surface (similar to 3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, similar to 3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near-surface permafrost was highly spatially restricted during the mPWP and was 93 +/- 3% smaller than the preindustrial extent. Near-surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near-surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.
  •  
20.
  • Han, Ning, et al. (author)
  • Achieving Efficient Electrocatalytic Oxygen Evolution in Acidic Media on Yttrium Ruthenate Pyrochlore through Cobalt Incorporation
  • 2023
  • In: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 33:20
  • Journal article (peer-reviewed)abstract
    • The development of electrocatalysts for the oxygen evolution reaction (OER) especially in acidic media remains the major challenge that still requires significant advances, both in material design and mechanistic exploration. In this study, the incorporation of cobalt in Y2-xCoxRu2O7−δ results in an ultrahigh OER activity because of the charge redistribution at eg orbitals between Ru and Co atoms. The Y1.75Co0.25Ru2O7−δ electrocatalyst exhibits an extremely small overpotential of 275 mV in 0.5 m H2SO4 at the current density of 10 mA cm−2, which is smaller than that of parent Y2Ru2O7−δ (360 mV) and commercial RuO2 (286 mV) catalysts. The systematic investigation of the composition related to OER activity shows that the Co substitution will also bring other effective changes, such as reducing the bandgap, and creating oxygen vacancies, which result in fast OER charge transfer. Meanwhile, the strengthening of the bond hybridization between the d orbitals of metal (Y and Ru) and the 2p orbitals of O will intrinsically enhance the chemical stability. Finally, theoretical calculations indicate that cobalt substitution reduces the theoretical overpotential both through an adsorbate evolution mechanism and a lattice oxygen-mediated mechanism.
  •  
21.
  • Han, Ning, et al. (author)
  • Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction
  • 2024
  • In: Matter. - 2590-2393 .- 2590-2385. ; 7:3, s. 1330-1343
  • Journal article (peer-reviewed)abstract
    • The acidic oxygen evolution reaction (OER) is essential for many renewable energy conversion and storage technologies. However, the high energy required to break the strong covalent O-H bond of H2O in acidic media results in sluggish OER kinetics. Here, we report the critical role of iron in a new family of iron-containing yttrium ruthenate (Y2-xFexRu2O7-δ) electrocatalysts in highly increasing the electrophilicity of surface oxygen, leading to a significant reduction of the kinetics barrier by 33%, thus an exceptional OER mass activity of 1,021 A· up to 12.4 and 7.7 times that of Y2Ru2O7-δ and RuO2, respectively. Introducing iron reduces the Mulliken atomic charge on the O sites in the generated Ru-O-Fe structure, thereby facilitating the acid-base nucleophilic assault from H2O and reducing the free energy on the rate-determining step of OER. This work provides an effective strategy to reduce the kinetics barrier to achieve highly efficient and economic OER in acidic conditions.
  •  
22.
  • Han, Ning, et al. (author)
  • Rational design of Ruddlesden–Popper perovskite electrocatalyst for oxygen reduction to hydrogen peroxide
  • 2022
  • In: SusMat. - : Wiley. - 2766-8479 .- 2692-4552. ; 2:4, s. 456-465
  • Journal article (peer-reviewed)abstract
    • Although the oxygen reduction process to hydrogen peroxide (H2O2) is a green option for H2O2 generation, the low activity and selectivity hindered the industry's process. In recent years, the electrochemical synthesis of H2O2 through a 2e– transfer method of oxygen reduction reaction (ORR) has piqued the interest of both academics and industry. Metal oxide catalysts have emerged as a novel family of electrochemical catalysts due to their unusual physical, chemical, and electrical characteristics. In this work, we first developed a Ruddlesden–Popper perovskite oxide (Pr2NiO4+δ) as a highly selective and active catalyst for 2e– ORR to produce H2O2. Molybdenum was introduced here to adjust the oxidation states of these transition metals with successful substitution into Ni-site to prepare Pr2Ni1-xMoxO4+δ, and the molybdenum substitution improves the H2O2 selectivity during the ORR process, in 0.1 M KOH, from 60% of Pr2NiO4+δ to 79% of Pr2Ni0.8Mo0.2O4+δ at 0.55 V versus RHE. A limiting H2O2 concentration of 0.24 mM for Pr2NiO4+δ and 0.42 mM for Pr2Ni0.8Mo0.2O4+δ was obtained at a constant current of 10 mA/cm2 using a flow-cell reactor using a gas-diffusion electrode. 
  •  
23.
  • Han, Zixuan, et al. (author)
  • Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble
  • 2021
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:6, s. 2537-2558
  • Journal article (peer-reviewed)abstract
    • The mid-Pliocene (∼3 Ma) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures, and it is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (due to the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. Note that the dynamic effect plays a more important role than the thermodynamic effect in regional precipitation minus evaporation (PmE) changes (i.e., northward ITCZ shift and wetter northern Indian Ocean). The thermodynamic effect is offset to some extent by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth's energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1∘ northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate.
  •  
24.
  • Haywood, Alan M., et al. (author)
  • The Pliocene Model Intercomparison Project Phase 2 : large-scale climate features and climate sensitivity
  • 2020
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:6, s. 2095-2123
  • Journal article (peer-reviewed)abstract
    • The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near similar to 400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.7 and 5.2 degrees C relative to the pre-industrial era with a multi-model mean value of 3.2 degrees C. Annual mean total precipitation rates increase by 7 % (range: 2 %-13 %). On average, surface air temperature (SAT) increases by 4.3 degrees C over land and 2.8 degrees C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60 degrees N and 60 degrees S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6-4.8 degrees C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.
  •  
25.
  • Kristan, Matej, et al. (author)
  • The first visual object tracking segmentation VOTS2023 challenge results
  • 2023
  • In: 2023 IEEE/CVF International conference on computer vision workshops (ICCVW). - : Institute of Electrical and Electronics Engineers Inc.. - 9798350307443 - 9798350307450 ; , s. 1788-1810
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking Segmentation VOTS2023 challenge is the eleventh annual tracker benchmarking activity of the VOT initiative. This challenge is the first to merge short-term and long-term as well as single-target and multiple-target tracking with segmentation masks as the only target location specification. A new dataset was created; the ground truth has been withheld to prevent overfitting. New performance measures and evaluation protocols have been created along with a new toolkit and an evaluation server. Results of the presented 47 trackers indicate that modern tracking frameworks are well-suited to deal with convergence of short-term and long-term tracking and that multiple and single target tracking can be considered a single problem. A leaderboard, with participating trackers details, the source code, the datasets, and the evaluation kit are publicly available at the challenge website1
  •  
26.
  • Le, Thanh-Tung, et al. (author)
  • Carbon-Decorated Fe3S4-Fe7Se8 Hetero-Nanowires: Interfacial Engineering for Bifunctional Electrocatalysis Toward Hydrogen and Oxygen Evolution Reactions
  • 2020
  • In: Journal of the Electrochemical Society. - : ELECTROCHEMICAL SOC INC. - 0013-4651 .- 1945-7111. ; 167:8
  • Journal article (peer-reviewed)abstract
    • The design and synthesis of complex multi-component heterostructures is an effective strategy to fabricate cost-efficient catalysts for electrochemical water splitting. Herein, one-dimensional porous Fe3S4-Fe7Se8 heterostructured nanowires confined in carbon (Fe3S4-Fe7Se8@C) were synthesized via the selenization of Fe-based organic-inorganic nanowires. Benefiting from the merits of morphology, composition and surface structure characteristics, i.e., the high structural void porosity, the direct electrical pathways of nanowire topology and the conductive carbon layer coating, the titled catalyst not only offered a larger accessible electrocatalytic interface but also facilitated diffusion of the electrolyte and gas. Moreover, the electron redistribution at the Fe3S4-Fe7Se8 heterojunction interfaces reduced the adsorption free-energy barriers on the active sites, endowing the catalysts with faster reaction kinetics and improved electrocatalytic activity. Accordingly, the optimal Fe3S4-Fe7Se8@C produced a low hydrogen evolution reaction overpotential of 124 mV at 10 mA cm (-2) with a Tafel slope of 111.2 mV dec(-1), and an ultralow oxygen evolution reactions overpotential of 219 mV at 20 mA cm (-2 ), respectively. When applied as both anode and cathode for overall water splitting, a low battery voltage of 1.67 V was achieved along with excellent stability for at least 12 h. The work presented here offered a feasible scheme to fabricate non-noble metal-based electrocatalysts for water splitting. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
  •  
27.
  • Li, Guoshuai, et al. (author)
  • Site selection of desert solar farms based on heterogeneous sand flux
  • 2024
  • In: npj Climate and Atmospheric Science. - 2397-3722. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Site selection for building solar farms in deserts is crucial and must consider the dune threats associated with sand flux, such as sand burial and dust contamination. Understanding changes in sand flux can optimize the site selection of desert solar farms. Here we use the ERA5-Land hourly wind data with 0.1° × 0.1° resolution to calculate the yearly sand flux from 1950 to 2022. The mean of sand flux is used to score the suitability of global deserts for building solar farms. We find that the majority of global deserts have low flux potential (≤ 40 m3 m-1 y-1) and resultant flux potential (≤ 2.0 m3 m-1 y-1) for the period 1950–2022. The scoring result demonstrates that global deserts have obvious patchy distribution of site suitability for building solar farms. Our study contributes to optimizing the site selection of desert solar farms, which aligns with the United Nations sustainability development goals for achieving affordable and clean energy target by 2030.
  •  
28.
  • Liu, Huan, et al. (author)
  • The first human induced pluripotent stem cell line of Kashin–Beck disease reveals involvement of heparan sulfate proteoglycan biosynthesis and PPAR pathway
  • 2022
  • In: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 289:1, s. 279-293
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Kashin-Beck disease (KBD) is an endemic osteochondropathy. Due to a lack of suitable animal or cellular disease models, the research progress on KBD has been limited. Our goal was to establish the first disease-specific human induced pluripotent stem cells (hiPSCs) cellular disease model of KBD, and to explore its etiology and pathogenesis exploiting transcriptome sequencing.METHODS: HiPSCs were reprogrammed from dermal fibroblasts of two KBD and one healthy control donors via integration-free vectors. Subsequently, hiPSCs were differentiated into chondrocytes through three-week culture. Gene expression profiles in KBD, normal primary chondrocytes and hiPSC-derived chondrocytes were defined by RNA sequencing. A Venn diagram was constructed to show the number of shared differentially expressed genes (DEGs) between KBD and normal. Gene oncology and Kyoto Encyclopedia of Genes and Genomes annotations were performed, and six DEGs were further validated in other individuals by real-time quantitative reverse transcription PCR (RT-qPCR).RESULTS: KBD cellular disease models were successfully established by generation of hiPSC lines. Seventeen consistent and significant DEGs present in all compared groups (KBD and normal) were identified. RT-qPCR validation gave consistent results with the sequencing data. Glycosaminoglycan biosynthesis-heparan sulfate/heparin, PPAR signaling pathway and cell adhesion molecules (CAMs) pathways were identified to be significantly altered in KBD.CONCLUSION: Differentiated chondrocytes deriving from KBD-origin hiPSCs provide the first cellular disease model for etiological studies of KBD. This study also provides new sights into the pathogenesis and etiology of KBD and is likely to inform the development of targeted therapeutics for its treatment.
  •  
29.
  • Liu, Wei, et al. (author)
  • The Synthesis of a Multiple D-A Conjugated Macrocycle and Its Application in Organic Photovoltaic
  • 2023
  • In: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773.
  • Journal article (peer-reviewed)abstract
    • As a novel class of materials, D-A conjugated macrocycles hold significant promise for chemical science. However, their potential in photovoltaic remains largely untapped due to the complexity of introducing multiple donor and acceptor moieties into the design and synthesis of cyclic pi-conjugated molecules. Here, we report a multiple D-A ring-like conjugated molecule (RCM) via the coupling of dimer molecule DBTP-C3 as a template and thiophenes in high yields. RCM exhibits a narrow optical gap (1.33 eV) and excellent thermal stability, and shows a remarkable photoluminescence yield (phi PL) of 11.1 % in solution, much higher than non-cyclic analogues. Organic solar cell (OSC) constructed with RCM as electron acceptor shows efficient charge separation at donor-acceptor band offsets and achieves a power conversion efficiency (PCE) of 14.2 %-approximately fourfold higher than macrocycle-based OSCs reported so far. This is partly due to low non-radiative voltage loss down to 0.20 eV and a high electroluminescence yield (phi EL) of 4x10-4. Our findings emphasize the potential of D-A cyclic conjugated molecules in advancing organic photovoltaic technology. A multiple D-A ring-like conjugated molecule, RCM was synthesized via a template-directed process. RCM inherits the superior photovoltaic properties characteristic of D-A linear molecules, including a narrow optical gap and effective charge transfer. Importantly, RCM demonstrates reduced non-radiative losses, attributable to its minimized vibration.+image
  •  
30.
  • Mopoung, Kunpot, et al. (author)
  • Understanding Antiferromagnetic Coupling in Lead-Free Halide Double Perovskite Semiconductors
  • 2024
  • In: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 128:12, s. 5313-5320
  • Journal article (peer-reviewed)abstract
    • Solution-processable semiconductors with antiferromagnetic (AFM) order are attractive for future spintronics and information storage technology. Halide perovskites containing magnetic ions have emerged as multifunctional materials, demonstrating a cross-link between structural, optical, electrical, and magnetic properties. However, stable optoelectronic halide perovskites that are antiferromagnetic remain sparse, and the critical design rules to optimize magnetic coupling still must be developed. Here, we combine the complementary magnetometry and electron-spin-resonance experiments, together with first-principles calculations to study the antiferromagnetic coupling in stable Cs-2(Ag:Na)FeCl6 bulk semiconductor alloys grown by the hydrothermal method. We show the importance of nonmagnetic monovalence ions at the B-I site (Na/Ag) in facilitating the superexchange interaction via orbital hybridization, offering the tunability of the Curie-Weiss parameters between -27 and -210 K, with a potential to promote magnetic frustration via alloying the nonmagnetic B-I site (Ag:Na ratio). Combining our experimental evidence with first-principles calculations, we draw a cohesive picture of the material design for B-site-ordered antiferromagnetic halide double perovskites.
  •  
31.
  • Ning, Weihua, et al. (author)
  • Magnetizing lead-free halide double perovskites
  • 2020
  • In: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 6:45
  • Journal article (peer-reviewed)abstract
    • Spintronics holds great potential for next-generation high-speed and low-power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br-6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.
  •  
32.
  • Ning, Xin, et al. (author)
  • ICGNet : An intensity-controllable generation network based on covering learning for face attribute synthesis
  • 2024
  • In: Information Sciences. - New York : Elsevier. - 0020-0255 .- 1872-6291. ; 660
  • Journal article (peer-reviewed)abstract
    • Face-attribute synthesis is a typical application of neural network technology. However, most current methods suffer from the problem of uncontrollable attribute intensity. In this study, we proposed a novel intensity-controllable generation network (ICGNet) based on covering learning for face attribute synthesis. Specifically, it includes an encoder module based on the principle of homology continuity between homologous samples to map different facial images onto the face feature space, which constructs sufficient and effective representation vectors by extracting the input information from different condition spaces. It then models the relationships between attribute instances and representational vectors in space to ensure accurate synthesis of the target attribute and complete preservation of the irrelevant region. Finally, the progressive changes in the facial attributes by applying different intensity constraints to the representation vectors. ICGNet achieves intensity-controllable face editing compared to other methods by extracting sufficient and effective representation features, exploring and transferring attribute relationships, and maintaining identity information. The source code is available at https://github.com/kllaodong/-ICGNet.•We designed a new encoder module to map face images of different condition spaces into face feature space to obtain sufficient and effective face feature representation.•Based on feature extraction, we proposed a novel Intensity-Controllable Generation Network (ICGNet), which can realize face attribute synthesis with continuous intensity control while maintaining identity and semantic information.•The quantitative and qualitative results showed that the performance of ICGNet is superior to current advanced models.© 2024 Elsevier Inc.
  •  
33.
  • Ning, Yujie, et al. (author)
  • Genetic Variants and Protein Alterations of Selenium- and T-2 Toxin-Responsive Genes Are Associated With Chondrocytic Damage in Endemic Osteoarthropathy
  • 2022
  • In: Frontiers in Genetics. - : Frontiers Media S.A.. - 1664-8021. ; 12
  • Journal article (peer-reviewed)abstract
    • The mechanism of environmental factors in Kashin-Beck disease (KBD) remains unknown. We aimed to identify single nucleotide polymorphisms (SNPs) and protein alterations of selenium- and T-2 toxin-responsive genes to provide new evidence of chondrocytic damage in KBD. This study sampled the cubital venous blood of 258 subjects including 129 sex-matched KBD patients and 129 healthy controls for SNP detection. We applied an additive model, a dominant model, and a recessive model to identify significant SNPs. We then used the Comparative Toxicogenomics Database (CTD) to select selenium- and T-2 toxin-responsive genes with the candidate SNP loci. Finally, immunohistochemistry was applied to verify the protein expression of candidate genes in knee cartilage obtained from 15 subjects including 5 KBD, 5 osteoarthritis (OA), and 5 healthy controls. Forty-nine SNPs were genotyped in the current study. The C allele of rs6494629 was less frequent in KBD than in the controls (OR = 0.63, p = 0.011). Based on the CTD database, PPARG, ADAM12, IL6, SMAD3, and TIMP2 were identified to interact with selenium, sodium selenite, and T-2 toxin. KBD was found to be significantly associated with rs12629751 of PPARG (additive model: OR = 0.46, p = 0.012; dominant model: OR = 0.45, p = 0.049; recessive model: OR = 0.18, p = 0.018), rs1871054 of ADAM12 (dominant model: OR = 2.19, p = 0.022), rs1800796 of IL6 (dominant model: OR = 0.30, p = 0.003), rs6494629 of SMAD3 (additive model: OR = 0.65, p = 0.019; dominant model: OR = 0.52, p = 0.012), and rs4789936 of TIMP2 (recessive model: OR = 5.90, p = 0.024). Immunohistochemistry verified significantly upregulated PPARG, ADAM12, SMAD3, and TIMP2 in KBD compared with OA and normal controls (p < 0.05). Genetic polymorphisms of PPARG, ADAM12, SMAD3, and TIMP2 may contribute to the risk of KBD. These genes could promote the pathogenesis of KBD by disturbing ECM homeostasis.
  •  
34.
  • Ning, Z, et al. (author)
  • Nontrivial Replication of Loci Detected by Multi-Trait Methods
  • 2021
  • In: Frontiers in genetics. - : Frontiers Media SA. - 1664-8021. ; 12, s. 627989-
  • Journal article (peer-reviewed)abstract
    • The ever-growing genome-wide association studies (GWAS) have revealed widespread pleiotropy. To exploit this, various methods that jointly consider associations of a genetic variant with multiple traits have been developed. Most efforts have been made concerning improving GWAS discovery power. However, how to replicate these discovered pleiotropic loci has yet to be discussed thoroughly. Unlike a single-trait scenario, multi-trait replication is not trivial considering the underlying genotype-multi-phenotype map of the associations. Here, we evaluate four methods for replicating multi-trait associations, corresponding to four levels of replication strength. Weak replication cannot justify pleiotropic genetic effects, whereas strong replication using our developed correlation methods can inform consistent pleiotropic genetic effects across the discovery and replication samples. We provide a protocol for replicating multi-trait genetic associations in practice. The described methods are implemented in the free and open-source R package MultiABEL.
  •  
35.
  • Oldeman, Arthur M., et al. (author)
  • Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble
  • 2021
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:6, s. 2427-2450
  • Journal article (peer-reviewed)abstract
    • The mid-Pliocene warm period (3.264–3.025 Ma) is the most recent geological period during which atmospheric CO2 levels were similar to recent historical values (∼400 ppm). Several proxy reconstructions for the mid-Pliocene show highly reduced zonal sea surface temperature (SST) gradients in the tropical Pacific Ocean, indicating an El Niño-like mean state. However, past modelling studies do not show these highly reduced gradients. Efforts to understand mid-Pliocene climate dynamics have led to the Pliocene Model Intercomparison Project (PlioMIP). Results from the first phase (PlioMIP1) showed clear El Niño variability (albeit significantly reduced) and did not show the greatly reduced time-mean zonal SST gradient suggested by some of the proxies.In this work, we study El Niño–Southern Oscillation (ENSO) variability in the PlioMIP2 ensemble, which consists of additional global coupled climate models and updated boundary conditions compared to PlioMIP1. We quantify ENSO amplitude, period, spatial structure and “flavour”, as well as the tropical Pacific annual mean state in mid-Pliocene and pre-industrial simulations. Results show a reduced ENSO amplitude in the model-ensemble mean (−24 %) with respect to the pre-industrial, with 15 out of 17 individual models showing such a reduction. Furthermore, the spectral power of this variability considerably decreases in the 3–4-year band. The spatial structure of the dominant empirical orthogonal function shows no particular change in the patterns of tropical Pacific variability in the model-ensemble mean, compared to the pre-industrial. Although the time-mean zonal SST gradient in the equatorial Pacific decreases for 14 out of 17 models (0.2 ∘C reduction in the ensemble mean), there does not seem to be a correlation with the decrease in ENSO amplitude. The models showing the most “El Niño-like” mean state changes show a similar ENSO amplitude to that in the pre-industrial reference, while models showing more “La Niña-like” mean state changes generally show a large reduction in ENSO variability. The PlioMIP2 results show a reasonable agreement with both time-mean proxies indicating a reduced zonal SST gradient and reconstructions indicating a reduced, or similar, ENSO variability.
  •  
36.
  • Pan, Jiaxin, et al. (author)
  • Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy
  • 2023
  • In: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Conventional spectroscopies are not sufficiently selective to comprehensively understand the behaviour of trapped carriers in perovskite solar cells, particularly under their working conditions. Here we use infrared optical activation spectroscopy (i.e., pump-push-photocurrent), to observe the properties and real-time dynamics of trapped carriers within operando perovskite solar cells. We compare behaviour differences of trapped holes in pristine and surface-passivated FA(0.99)Cs(0.01)PbI(3) devices using a combination of quasi-steady-state and nanosecond time-resolved pump-push-photocurrent, as well as kinetic and drift-diffusion models. We find a two-step trap-filling process: the rapid filling (similar to 10 ns) of low-density traps in the bulk of perovskite, followed by the slower filling (similar to 100 ns) of high-density traps at the perovskite/hole transport material interface. Surface passivation by n-octylammonium iodide dramatically reduces the number of trap states (similar to 50 times), improving the device performance substantially. Moreover, the activation energy (similar to 280 meV) of the dominant hole traps remains similar with and without surface passivation.
  •  
37.
  •  
38.
  • Pontes, Gabriel M., et al. (author)
  • Drier tropical and subtropical Southern Hemisphere in the mid-Pliocene Warm Period
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Thermodynamic arguments imply that global mean rainfall increases in a warmer atmosphere; however, dynamical effects may result in more significant diversity of regional precipitation change. Here we investigate rainfall changes in the mid-Pliocene Warm Period (similar to 3 Ma), a time when temperatures were 2-3 degrees C warmer than the pre-industrial era, using output from the Pliocene Model Intercomparison Projects phases 1 and 2 and sensitivity climate model experiments. In the Mid-Pliocene simulations, the higher rates of warming in the northern hemisphere create an interhemispheric temperature gradient that enhances the southward cross-equatorial energy flux by up to 48%. This intensified energy flux reorganizes the atmospheric circulation leading to a northward shift of the Inter-Tropical Convergence Zone and a weakened and poleward displaced Southern Hemisphere Subtropical Convergences Zones. These changes result in drier-than-normal Southern Hemisphere tropics and subtropics. The evaluation of the mid-Pliocene adds a constraint to possible future warmer scenarios associated with differing rates of warming between hemispheres.
  •  
39.
  • Pontes, Gabriel M., et al. (author)
  • Mid-Pliocene El Niño/Southern Oscillation suppressed by Pacific intertropical convergence zone shift
  • 2022
  • In: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15:9, s. 726-734
  • Journal article (peer-reviewed)abstract
    • The El Niño/Southern Oscillation (ENSO), the dominant driver of year-to-year climate variability in the equatorial Pacific Ocean, impacts climate pattern across the globe. However, the response of the ENSO system to past and potential future temperature increases is not fully understood. Here we investigate ENSO variability in the warmer climate of the mid-Pliocene (~3.0–3.3 Ma), when surface temperatures were ~2–3 °C above modern values, in a large ensemble of climate models—the Pliocene Model Intercomparison Project. We show that the ensemble consistently suggests a weakening of ENSO variability, with a mean reduction of 25% (±16%). We further show that shifts in the equatorial Pacific mean state cannot fully explain these changes. Instead, ENSO was suppressed by a series of off-equatorial processes triggered by a northward displacement of the Pacific intertropical convergence zone: weakened convective feedback and intensified Southern Hemisphere circulation, which inhibit various processes that initiate ENSO. The connection between the climatological intertropical convergence zone position and ENSO we find in the past is expected to operate in our warming world with important ramifications for ENSO variability. 
  •  
40.
  • Puttisong, Yuttapoom, et al. (author)
  • Effect of Crystal Symmetry on the Spin States of Fe3+ and Vibration Modes in Lead-free Double-Perovskite Cs2AgBi(Fe)Br-6
  • 2020
  • In: The Journal of Physical Chemistry Letters. - : AMER CHEMICAL SOC. - 1948-7185. ; 11:12, s. 4873-4878
  • Journal article (peer-reviewed)abstract
    • We show by electron spin resonance (ESR) and Raman spectroscopies that the crystal phase transition of the lead-free double-perovskite Cs2AgBiBr6 has a profound symmetry-breaking effect on the high spin states of, for example, a transition-metal ion Fe3+ and the vibrational modes. It lifts their degeneracy when the crystal undergoes the cubic-tetragonal phase transition, splitting the six-fold degenerate S = 5/2 state of Fe3+ to three Kramer doublets and the enharmonic breathing mode T-g of the MBr6 octahedra (M = Ag, Bi, Fe) into E-g + A(g). The magnitudes of both spin and Raman line splitting are shown to directly correlate with the strength of the tetragonal strain field. This work, in turn, demonstrates the power of the ESR and Raman spectroscopies in probing structural phase transitions and in providing in-depth information on the interplay between the structural, spin, and vibrational properties of lead-free double perovskites, a newly emerging and promising class of materials for low-cost and high-efficiency photovoltaics and optoelectronics.
  •  
41.
  • Ren, Xin, et al. (author)
  • The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene : results from PlioMIP2
  • 2023
  • In: Climate of the Past. - 1814-9324 .- 1814-9332. ; 19:10, s. 2053-2077
  • Journal article (peer-reviewed)abstract
    • The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial.In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models.
  •  
42.
  • Senanayake, Indunil C., et al. (author)
  • Fungal diversity notes 1611–1716: taxonomic and phylogenetic contributions on fungal genera and species emphasis in south China
  • 2023
  • In: Fungal Diversity. - 1560-2745 .- 1878-9129. ; 122, s. 161-403
  • Journal article (peer-reviewed)abstract
    • This article is the 15th contribution in the Fungal Diversity Notes series, wherein 115 taxa from three phyla, nine classes, 28 orders, 48 families, and 64 genera are treated. Fungal taxa described and illustrated in the present study include a new family, five new genera, 61 new species, five new combinations, one synonym, one new variety and 31 records on new hosts or new geographical distributions. Ageratinicolaceae fam. nov. is introduced and accommodated in Pleosporales. The new genera introduced in this study are Ageratinicola, Kevinia, Pseudomultiseptospora (Parabambusicolaceae), Marasmiellomycena, and Vizzinia (Porotheleaceae). Newly described species are Abrothallus altoandinus, Ageratinicola kunmingensis, Allocryptovalsa aceris, Allophoma yuccae, Apiospora cannae, A. elliptica, A. pallidesporae, Boeremia wisteriae, Calycina papaeana, Clypeococcum lichenostigmoides, Coniochaeta riskali-shoyakubovii, Cryphonectria kunmingensis, Diaporthe angustiapiculata, D. campylandrae, D. longipapillata, Diatrypella guangdongense, Dothiorella franceschinii, Endocalyx phoenicis, Epicoccum terminosporum, Fulvifomes karaiensis, F. pannaensis, Ganoderma ghatensis, Hysterobrevium baoshanense, Inocybe avellaneorosea, I. lucida, Jahnula oblonga, Kevinia lignicola, Kirschsteiniothelia guangdongensis, Laboulbenia caprina, L. clavulata, L. cobiae, L. cosmodisci, L. nilotica, L. omalii, L. robusta, L. similis, L. stigmatophora, Laccaria rubriporus, Lasiodiplodia morindae, Lyophyllum agnijum, Marasmiellomycena pseudoomphaliiformis, Melomastia beihaiensis, Nemania guangdongensis, Nigrograna thailandica, Nigrospora ficuum, Oxydothis chinensis, O. yunnanensis, Petriella thailandica, Phaeoacremonium chinensis, Phialocephala chinensis, Phytophthora debattistii, Polyplosphaeria nigrospora, Pronectria loweniae, Seriascoma acutispora, Setoseptoria bambusae, Stictis anomianthi, Tarzetta tibetensis, Tarzetta urceolata, Tetraploa obpyriformis, Trichoglossum beninense, and Tricoderma pyrrosiae. We provide an emendation for Urnula ailaoshanensis Agaricus duplocingulatoides var. brevisporus introduced as a new variety based on morphology and phylogeny.
  •  
43.
  • Wang, Hao, et al. (author)
  • In-situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes
  • 2023
  • In: Light. - : SPRINGERNATURE. - 2095-5545 .- 2047-7538. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Regulation of perovskite growth plays a critical role in the development of high-performance optoelectronic devices. However, judicious control of the grain growth for perovskite light emitting diodes is elusive due to its multiple requirements in terms of morphology, composition, and defect. Herein, we demonstrate a supramolecular dynamic coordination strategy to regulate perovskite crystallization. The combined use of crown ether and sodium trifluoroacetate can coordinate with A site and B site cations in ABX(3) perovskite, respectively. The formation of supramolecular structure retard perovskite nucleation, while the transformation of supramolecular intermediate structure enables the release of components for slow perovskite growth. This judicious control enables a segmented growth, inducing the growth of insular nanocrystal consist of low-dimensional structure. Light emitting diode based on this perovskite film eventually brings a peak external quantum efficiency up to 23.9%, ranking among the highest efficiency achieved. The homogeneous nano-island structure also enables high-efficiency large area (1 cm(2)) device up to 21.6%, and a record high value of 13.6% for highly semi-transparent ones.
  •  
44.
  • Wang, Ning, et al. (author)
  • Boride-derived oxygen-evolution catalysts
  • 2021
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Journal article (peer-reviewed)abstract
    • Metal borides/borates have been considered promising as oxygen evolution reaction catalysts; however, to date, there is a dearth of evidence of long-term stability at practical current densities. Here we report a phase composition modulation approach to fabricate effective borides/borates-based catalysts. We find that metal borides in-situ formed metal borates are responsible for their high activity. This knowledge prompts us to synthesize NiFe-Boride, and to use it as a templating precursor to form an active NiFe-Borate catalyst. This boride-derived oxide catalyzes oxygen evolution with an overpotential of 167 mV at 10 mA/cm2 in 1 M KOH electrolyte and requires a record-low overpotential of 460 mV to maintain water splitting performance for over 400 h at current density of 1 A/cm2. We couple the catalyst with CO reduction in an alkaline membrane electrode assembly electrolyser, reporting stable C2H4 electrosynthesis at current density 200 mA/cm2 for over 80 h.
  •  
45.
  • Wang, Yuzhe, et al. (author)
  • Multiple ancestral haplotypes harboring regulatory mutations cumulatively contribute to a QTL affecting chicken growth traits
  • 2020
  • In: Communications Biology. - : NATURE PUBLISHING GROUP. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • In depth studies of quantitative trait loci (QTL) can provide insights to the genetic architectures of complex traits. A major effect QTL at the distal end of chicken chromosome 1 has been associated with growth traits in multiple populations. This locus was fine-mapped in a fifteen-generation chicken advanced intercross population including 1119 birds and explored in further detail using 222 sequenced genomes from 10 high/low body weight chicken stocks. We detected this QTL that, in total, contributed 14.4% of the genetic variance for growth. Further, nine mosaic precise intervals (Kb level) which contain ancestral regulatory variants were fine-mapped and we chose one of them to demonstrate the key regulatory role in the duodenum. This is the first study to break down the detail genetic architectures for the well-known QTL in chicken and provides a good example of the fine-mapping of various of quantitative traits in any species. Yuzhe Wang, Xuemin Cao et al. report the fine-mapping of a major growth trait QTL in chicken using genome-wide association and haplotype association analyses. They discover multiple mutations cumulatively contribute to the previously-reported QTL and identify one of a regulatory mutation that contributes to the variation in the measured traits.
  •  
46.
  • Wei, Peng, et al. (author)
  • Charactering the Peak-to-Average Power Ratio of OTFS Signals : A Large System Analysis
  • 2022
  • In: IEEE Transactions on Wireless Communications. - : Institute of Electrical and Electronics Engineers (IEEE). - 1536-1276 .- 1558-2248. ; 21:6, s. 3705-3720
  • Journal article (peer-reviewed)abstract
    • Orthogonal time frequency space (OTFS) system constitutes an effective structure conceived for efficiently utilizing the channel information, which is capable of achieving a promising transmission performance in high-mobility environment. To extract enough channel diversity, a two-dimensional Fourier transformation combined with a pulse shape is designed at the OTFS transmitter. Consequently, the amplitude of OTFS signals may fluctuate drastically, owing to the combined dependency of the OTFS transformation and the pulse shape. To quantify the amplitude fluctuation, we investigate the peak-to-average power ratio (PAPR) of OTFS signals, for a large amount of data in the delay-Doppler domain. We first reveal that when the number of data points approaches to infinity, based on central limit theorems for dependent variables, the complexvalued OTFS signals weakly converge to a Gaussian distribution. Then, according to the extremal theory of the Chi-squared process for stationary OTFS signals, an accurate expression of the PAPR distribution is derived, depending on the transmit pulse and the number of data points. It is also demonstrated that upon modifying the exponential factor, the analytical PAPR expression is applicable for the non-stationary Gaussian distribution caused by the bandlimited pulse with a large roll-off factor. Simulation results confirm the accuracy of the analytical PAPR probability for practical conditions.
  •  
47.
  • Wei, Wendong, et al. (author)
  • Embodied greenhouse gas emissions from building China's large-scale power transmission infrastructure
  • 2021
  • In: Nature Sustainability. - : NATURE RESEARCH. - 2398-9629. ; 4:8, s. 739-747
  • Journal article (peer-reviewed)abstract
    • China has built the world's largest power transmission infrastructure by consuming massive volumes of greenhouse gas-(GHG-) intensive products such as steel. A quantitative analysis of the carbon implications of expanding the transmission infrastructure would shed light on the trade-offs among three connected dimensions of sustainable development, namely, climate change mitigation, energy access and infrastructure development. By collecting a high-resolution inventory, we developed an assessment framework of, and analysed, the GHG emissions caused by China's power transmission infrastructure construction during 1990-2017. We show that cumulative embodied GHG emissions have dramatically increased by more than 7.3 times those in 1990, reaching 0.89 GtCO(2)-equivalent in 2017. Over the same period, the gaps between the well-developed eastern and less-developed western regions in China have gradually narrowed. Voltage class, transmission-line length and terrain were important factors that influenced embodied GHG emissions. We discuss measures for the mitigation of GHG emissions from power transmission development that can inform global low-carbon infrastructure transitions.
  •  
48.
  • Weiffenbach, Julia E., et al. (author)
  • Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2
  • 2023
  • In: Climate of the Past. - : COPERNICUS GESELLSCHAFT MBH. - 1814-9324 .- 1814-9332. ; 19:1, s. 61-85
  • Journal article (peer-reviewed)abstract
    • The mid-Pliocene warm period (3.264-3.025 Ma) is the most recent geological period in which the atmospheric CO2 concentration was approximately equal to the concentration we measure today (ca. 400 ppm). Sea surface temperature (SST) proxies indicate above-average warming over the North Atlantic in the mid-Pliocene with respect to the pre-industrial period, which may be linked to an intensified Atlantic Meridional Overturning Circulation (AMOC). Earlier results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) show that the ensemble simulates a stronger AMOC in the mid-Pliocene than in the pre-industrial. However, no consistent relationship between the stronger mid-Pliocene AMOC and either the Atlantic northward ocean heat transport (OHT) or average North Atlantic SSTs has been found. In this study, we look further into the drivers and consequences of a stronger AMOC in mid-Pliocene compared to pre-industrial simulations in PlioMIP2. We find that all model simulations with a closed Bering Strait and Canadian Archipelago show reduced freshwater transport from the Arctic Ocean into the North Atlantic. This contributes to an increase in salinity in the subpolar North Atlantic and Labrador Sea that can be linked to the stronger AMOC in the mid-Pliocene. To investigate the dynamics behind the ensembles variable response of the total Atlantic OHT to the stronger AMOC, we separate the Atlantic OHT into two components associated with either the overturning circulation or the wind-driven gyre circulation. While the ensemble mean of the overturning component is increased significantly in magnitude in the mid-Pliocene, it is partly compensated by a reduction in the gyre component in the northern subtropical gyre region. This indicates that the lack of relationship between the total OHT and AMOC is due to changes in OHT by the subtropical gyre. The overturning and gyre components should therefore be considered separately to gain a more complete understanding of the OHT response to a stronger mid-Pliocene AMOC. In addition, we show that the AMOC exerts a stronger influence on North Atlantic SSTs in the mid-Pliocene than in the pre-industrial, providing a possible explanation for the improved agreement of the PlioMIP2 ensemble mean SSTs with reconstructions in the North Atlantic.
  •  
49.
  • Xie, Xu-Qin, et al. (author)
  • miR-124 Intensified Oxaliplatin-Based Chemotherapy by Targeting CAPN2 in Colorectal Cancer
  • 2020
  • In: MOLECULAR THERAPY-ONCOLYTICS. - : CELL PRESS. - 2372-7705. ; 17, s. 320-331
  • Journal article (peer-reviewed)abstract
    • Our previous study demonstrated that miR-124 was downregulated in colorectal cancer (CRC) compared with normal mucosa, and the downregulated expression of miR-124 was an independent prognostic factor in CRC patients. However, the function of miR-124 in CRC patients treated with chemotherapy is currently unclear. The aim of this study was to determine the miR-124 expression and its regulative role in oxaliplatin (L-OHP)-based chemotherapy of CRC patients. We observed that low miR-124 expression was correlated with worse overall survival (OS) in the 220 patients who received postoperative chemotherapy of 5-fluorouracil [5-FU] +leucovorin+L-OHP (FOLFOX) or capecitabine+L-OHP (XELOX). miR-124 overexpression promoted L-OHP-induced, but not 5-FU-induced, cytotoxicity and apoptosis in HT29 and SW480 cells. CAPN2 was a direct target of miR124, and its protein expression was reduced by forced expression of miR-124. miR-124 inhibited tumorigenesis and promoted OS of mice bearing xenograft tumors, especially upon L-OHP treatment. miR-124 also promoted L-OHP-induced apoptosis and restrained CAPN2 protein expression in xenograft tumors. Our results suggest that miR-124 could be considered as both a predictor of L-OHP-based chemotherapy for personalized treatment and a therapeutic target for CRC.
  •  
50.
  • Yi, Chang, et al. (author)
  • Intermediate-phase-assisted low-temperature formation of gamma-CsPbI3 films for high-efficiency deep-red light-emitting devices
  • 2020
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Black phase CsPbI3 is attractive for optoelectronic devices, while usually it has a high formation energy and requires an annealing temperature of above 300 degrees C. The formation energy can be significantly reduced by adding HI in the precursor. However, the resulting films are not suitable for light-emitting applications due to the high trap densities and low photoluminescence quantum efficiencies, and the low temperature formation mechanism is not well understood yet. Here, we demonstrate a general approach for deposition of gamma -CsPbI3 films at 100 degrees C with high photoluminescence quantum efficiencies by adding organic ammonium cations, and the resulting light-emitting diode exhibits an external quantum efficiency of 10.4% with suppressed efficiency roll-off. We reveal that the low-temperature crystallization process is due to the formation of low-dimensional intermediate states, and followed by interionic exchange. This work provides perspectives to tune phase transition pathway at low temperature for CsPbI3 device applications. Exploiting low-temperature formed black phase CsPbI3 for light-emitting applications remains a challenge. Here, the authors propose a method to enable the deposition of gamma -CsPbI3 films at 100C and demonstrate a light-emitting diode with an external quantum efficiency of 10.4% with suppressed efficiency roll-off.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 54
Type of publication
journal article (52)
conference paper (1)
research review (1)
Type of content
peer-reviewed (53)
other academic/artistic (1)
Author/Editor
Zhang, Zhongshi (13)
Stepanek, Christian (13)
Lohmann, Gerrit (13)
Tan, Ning (13)
Chandan, Deepak (13)
Feng, Ran (13)
show more...
Abe-Ouchi, Ayako (12)
Chan, Wing-Le (12)
Gao, Feng (11)
Haywood, Alan M. (11)
Contoux, Camille (11)
Otto-Bliesner, Bette ... (11)
Peltier, W. Richard (11)
Zhang, Qiong (10)
Li, Xiangyu (10)
Tindall, Julia C. (10)
Hunter, Stephen J. (10)
Chandler, Mark A. (10)
Guo, Chuncheng (9)
Sohl, Linda E. (9)
Baatsen, Michiel L. ... (9)
von der Heydt, Anna ... (9)
Li, Qiang (8)
Nisancioglu, Kerim H ... (8)
Ramstein, Gilles (8)
Lunt, Daniel J. (8)
Brady, Esther C. (8)
Kamae, Youichi (7)
Zhang, Wei (6)
Williams, Charles J. ... (6)
Han, Ning (6)
Ji, Fuxiang (5)
Zhang, Xuan (5)
Guo, Wei (5)
Fransaer, Jan (5)
Wang, Feng (4)
Wang, Linqin (4)
Zhou, Zhenyu (4)
Xie, Sijie (4)
Wang, Kai (3)
Sun, Licheng, 1962- (3)
Puttisong, Yuttapoom (3)
Chen, Weimin (3)
Buyanova, Irina (3)
Zhang, Muyi (3)
Zhang, Chi (3)
Feng, Shihui (3)
Dowsett, Harry J. (3)
Feng, Shihui, 1994- (3)
Han, Zixuan (3)
show less...
University
Stockholm University (23)
Linköping University (19)
Umeå University (4)
Royal Institute of Technology (4)
Uppsala University (3)
Lund University (3)
show more...
Karolinska Institutet (3)
University of Gothenburg (2)
Swedish University of Agricultural Sciences (2)
Luleå University of Technology (1)
Halmstad University (1)
Mälardalen University (1)
Örebro University (1)
Chalmers University of Technology (1)
Karlstad University (1)
show less...
Language
English (54)
Research subject (UKÄ/SCB)
Natural sciences (46)
Medical and Health Sciences (6)
Engineering and Technology (5)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view