SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nowak Grzegorz) srt2:(2015-2019)"

Search: WFRF:(Nowak Grzegorz) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gandolfi, Davide, et al. (author)
  • The Transiting Multi-planet System HD 3167: A 5.7 M ⊕ Super-Earth and an 8.3 M ⊕ Mini-Neptune
  • 2017
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 154:3, s. 123-
  • Journal article (peer-reviewed)abstract
    • HD 3167 is a bright (V = 8.9 mag) K0 V star observed by NASA’s K2 space mission during its Campaign 8. It has recently been found to host two small transiting planets, namely, HD 3167b, an ultra-short-period (0.96 days) super-Earth, and HD 3167c, a mini-Neptune on a relatively long-period orbit (29.85 days). Here we present an intensive radial velocity (RV) follow-up of HD 3167 performed with the FIES@NOT, HARPS@ESO-3.6 m, and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69 ± 0.44 M⊕, a radius of 1.574 ± 0.054 R⊕, and a mean density of {8.00}-0.98+1.10 g cm^-3, HD 3167b joins the small group of ultra-short-period planets known to have rocky terrestrial compositions. HD 3167c has a mass of 8.33-1.85+1.79 M⊕ and a radius of 2.74}-0.100+0.106 R⊕, yielding a mean density of 2.21-0.53+0.56 g cm^-3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (∼350 km) and the brightness of the host star make HD 3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the RV measurements but the currently available data set does not allow us to draw any firm conclusions on the origin of the observed variation.
  •  
2.
  • Hirano, Teruyuki, et al. (author)
  • Exoplanets around Low-mass Stars Unveiled by K2
  • 2018
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 155:3, s. 127-
  • Journal article (peer-reviewed)abstract
    • We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5–10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96 to 33 days. For one of the planets (K2-151b), we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius R p on stellar insolation and metallicity [Fe/H]. We confirm that for periods P ≲ 2 days, planets with a radius Rp≳ 2 R⊕ are less common than planets with a radius between 1–2 R⊕. We also see a hint of the “radius valley” between 1.5 and 2 R⊕, which has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: the few planets larger than about 3 R⊕ are found around the most metal-rich M dwarfs.
  •  
3.
  • Idoia Biurrun, Idoia, et al. (author)
  • GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands
  • 2019
  • In: Palaearctic Grasslands. - : Eurasian Dry Grassland Group (EDGG). - 2627-9827. ; :44, s. 26-47
  • Journal article (peer-reviewed)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phytocoenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems.
  •  
4.
  • Livingston, John H., et al. (author)
  • Three Small Planets Transiting a Hyades Star
  • 2018
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 155:3
  • Journal article (peer-reviewed)abstract
    • We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757 ± 0.0011, 17.30681-0.00036+0.00034, and 25.5715-0.0040+0.0038 days, and radii of 1.05 ± 0.16, 3.14 ± 0.36, and 1.55-0.21+0.24 Rearth , respectively. With an age of 600–800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J = 9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.
  •  
5.
  • Persson, Carina, 1964, et al. (author)
  • Greening of the brown-dwarf desert EPIC 212036875b: a 51 M-J object in a 5-day orbit around an F7V star
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Journal article (peer-reviewed)abstract
    • Context. Although more than 2000 brown dwarfs have been detected to date, mainly from direct imaging, their characterisation is difficult due to their faintness and model-dependent results. In the case of transiting brown dwarfs, however, it is possible to make direct high-precision observations. Aims. Our aim is to investigate the nature and formation of brown dwarfs by adding a new well-characterised object, in terms of its mass, radius and bulk density, to the currently small sample of less than 20 transiting brown dwarfs. Methods. One brown dwarf candidate was found by the KESPRINT consortium when searching for exoplanets in the K2 space mission Campaign 16 field. We combined the K2 photometric data with a series of multicolour photometric observations, imaging, and radial velocity measurements to rule out false positive scenarios and to determine the fundamental properties of the system. Results. We report the discovery and characterisation of a transiting brown dwarf in a 5.17-day eccentric orbit around the slightly evolved F7V star EPIC 212036875. We find a stellar mass of 1.15 +/- 0.08 M-circle dot, a stellar radius of 1.41 +/- 0.05 R-circle dot, and an age of 5.1 +/- 0.9 Gyr. The mass and radius of the companion brown dwarf are 51 +/- 2 M-J and 0.83 +/- 0.03 R-J, respectively, corresponding to a mean density of 108(-13)(+15) g cm(-3). Conclusions. EPIC 212036875 b is a rare object that resides in the brown-dwarf desert. In the mass-density diagram for planets, brown dwarfs, and stars, we find that all giant planets and brown dwarfs follow the same trend from similar to 0.3 M-J to the turn-over to hydrogen burning stars at similar to 73 M-J. EPIC 212036875 b falls close to the theoretical model for mature H/He dominated objects in this diagram as determined by interior structure models. We argue that EPIC 212036875 b formed via gravitational disc instabilities in the outer part of the disc, followed by a quick migration. Orbital tidal circularisation may have started early in its history for a brief period when the brown dwarf's radius was larger. The lack of spin-orbit synchronisation points to a weak stellar dissipation parameter (Q(star)' greater than or similar to 10(8)), which implies a circularisation timescale of greater than or similar to 23 Gyr, or suggests an interaction between the magnetic and tidal forces of the star and the brown dwarf.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view