SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Olsson Pär A T 1981 ) srt2:(2018)"

Search: WFRF:(Olsson Pär A T 1981 ) > (2018)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Olsson, Pär A T, 1981-, et al. (author)
  • All-atomic and coarse-grained molecular dynamics investigation of deformation in semi-crystalline lamellar polyethylene
  • 2018
  • In: Polymer. - : Elsevier Ltd. - 0032-3861 .- 1873-2291. ; 153, s. 305-316
  • Journal article (peer-reviewed)abstract
    • In the present work we have performed classical molecular dynamics modelling to investigate the effects of different types of force-fields on the stress-strain and yielding behaviours in semi-crystalline lamellar stacked linear polyethylene. To this end, specifically the all-atomic optimized potential for liquid simulations (OPLS-AA) and the coarse-grained united-atom (UA) force-fields are used to simulate the yielding and tensile behaviour for the lamellar separation mode. Despite that the considered samples and their topologies are identical for both approaches, the results show that they predict widely different stress-strain and yielding behaviours. For all UA simulations we obtain oscillating stress-strain curves accompanied by repetitive chain transport to the amorphous region, along with substantial chain slip and crystal reorientation. For the OPLS-AA modelling primarily cavitation formation is observed, with small amounts of chain slip to reorient the crystal such that the chains align in the tensile direction. This force-field dependence is rooted in the lack of explicit H-H and C-H repulsion in the UA approach, which gives rise to underestimated ideal critical resolved shear stress. The computed critical resolved shear stress for the OPLS-AA approach is in good agreement with density functional theory calculations and the yielding mechanisms resemble those of the lamellar separation mode. The disparate energy and shear stress barriers for chain slip of the different models can be interpreted as differently predicted intrinsic activation rates for the mechanism, which ultimately are responsible for the observed diverse responses of the two modelling approaches. © 2018 Elsevier Ltd
  •  
2.
  • Kroon, Martin, et al. (author)
  • Anisotropic Elastic-Viscoplastic Properties at Finite Strains of Injection-Moulded Low-Density Polyethylene
  • 2018
  • In: Experimental mechanics. - : Springer New York LLC. - 0014-4851 .- 1741-2765. ; 58:1, s. 75-86
  • Journal article (peer-reviewed)abstract
    • Injection-moulding is one of the most common manufacturing processes used for polymers. In many applications, the mechanical properties of the product is of great importance. Injection-moulding of thin-walled polymer products tends to leave the polymer structure in a state where the mechanical properties are anisotropic, due to alignment of polymer chains along the melt flow direction. The anisotropic elastic-viscoplastic properties of low-density polyethylene, that has undergone an injection-moulding process, are therefore examined in the present work. Test specimens were punched out from injection-moulded plates and tested in uniaxial tension. Three in-plane material directions were investigated. Because of the small thickness of the plates, only the in-plane properties could be determined. Tensile tests with both monotonic and cyclic loading were performed, and the local strains on the surface of the test specimens were measured using image analysis. True stress vs. true strain diagrams were constructed, and the material response was evaluated using an elastic-viscoplasticity law. The components of the anisotropic compliance matrix were determined together with the direction-specific plastic hardening parameters. © 2017 The Author(s)
  •  
3.
  • Olsson, Pär A T, 1981-, et al. (author)
  • Ab initio investigation of monoclinic phase stability and martensitic transformation in crystalline polyethylene
  • 2018
  • In: Physical Review Materials. - : American Physical Society. - 2475-9953. ; 2:7, s. 7-13
  • Journal article (peer-reviewed)abstract
    • We study the phase stability and martensitic transformation of orthorhombic and monoclimic polyethylene by means of density functional theory using the nonempirical consistent-exchange vdW-DF-cx functional [Phys. Rev. B 89, 035412 (2014)]. The results show that the orthorhombic phase is the most stable of the two. Owing to the occurrence of soft librational phonon modes, the monoclimic phase is predicted not to be stable at zero pressure and temperature, but becomes stable when subjected to compressive transverse deformations that pin the chains and prevent them from wiggling freely. This theoretical characterization, or prediction, is consistent with the fact that the monoclimic phase is only observed experimentally when the material is subjected to mechanical loading. Also, the estimated threshold energy for the combination of lattice deformation associated with the T1 and T2 transformation paths (between the orthorhombic and monoclimic phases) and chain shuffling is found to be sufficiently low for thermally activated back transformations to occur. Thus, our prediction is that the crystalline part can transform back from the monoclimc to the orthorhombic phase upon unloading and/or annealing, which is consistent with experimental observations. Finally, we observe how a combination of such phase transformations can lead to a fold-plane reorientation from {110} to {100} type in a single orthorhombic crystal.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view