SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Opedal Øystein H.) srt2:(2021)"

Search: WFRF:(Opedal Øystein H.) > (2021)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Albertsen, Elena, et al. (author)
  • Using ecological context to interpret spatiotemporal variation in natural selection
  • 2021
  • In: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 75:2, s. 294-309
  • Journal article (peer-reviewed)abstract
    • Spatiotemporal variation in natural selection is expected, but difficult to estimate. Pollinator-mediated selection on floral traits provides a good system for understanding and linking variation in selection to differences in ecological context. We studied pollinator-mediated selection in five populations of Dalechampia scandens (Euphorbiaceae) in Costa Rica and Mexico. Using a nonlinear path-analytical approach, we assessed several functional components of selection, and linked variation in pollinator-mediated selection across time and space to variation in pollinator assemblages. After correcting for estimation error, we detected moderate variation in net selection on two out of four blossom traits. Both the opportunity for selection and the mean strength of selection decreased with increasing reliability of cross-pollination. Selection for pollinator attraction was consistently positive and stronger on advertisement than reward traits. Selection on traits affecting pollen transfer from the pollinator to the stigmas was strong only when cross-pollination was unreliable and there was a mismatch between pollinator and blossom size. These results illustrate how consideration of trait function and ecological context can facilitate both the detection and the causal understanding of spatiotemporal variation in natural selection.
  •  
2.
  • Pélabon, Christophe, et al. (author)
  • Is There More to Within-plant Variation in Seed Size than Developmental Noise?
  • 2021
  • In: Evolutionary Biology. - : Springer Science and Business Media LLC. - 0071-3260 .- 1934-2845. ; 48:3, s. 366-377
  • Journal article (peer-reviewed)abstract
    • Within-plant variation in seed size may merely reflect developmental instability, or it may be adaptive in facilitating diversifying bet-hedging, that is, production of phenotypically diverse offspring when future environments are unpredictable. To test the latter hypothesis, we analyzed patterns of variation in seed size in 11 populations of the perennial vine Dalechampia scandens grown in a common greenhouse environment. We tested whether population differences in the mean and variation of seed size covaried with environmental predictability at two different timescales. We also tested whether within-plant variation in seed size was correlated with independent measures of floral developmental instability and increased under stressful conditions. Populations differed genetically in the amount of seed-size variation occurring among plants, among infructescences within plants, and among seeds within infructescences. Within-individual variation was not detectably correlated with measures of developmental instability and did not increase under stress, but it increased weakly with short-term environmental unpredictability of precipitation at the source-population site. These results support the hypothesis that greater variation in seed size is adaptive when environmental predictability is low.
  •  
3.
  • Clo, Josselin, et al. (author)
  • Genetics of quantitative traits with dominance under stabilizing and directional selection in partially selfing species
  • 2021
  • In: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 75:8, s. 1920-1935
  • Journal article (peer-reviewed)abstract
    • Recurrent self-fertilization is thought to lead to reduced adaptive potential by decreasing the genetic diversity of populations, thus leading selfing lineages down an evolutionary “blind alley.” Although well supported theoretically, empirical support for reduced adaptability in selfing species is limited. One limitation of classical theoretical models is that they assume pure additivity of the fitness-related traits that are under stabilizing selection, despite ample evidence that quantitative traits are subject to dominance. Here, we relax this assumption and explore the effect of dominance on a fitness-related trait under stabilizing selection for populations that differ in selfing rates. By decomposing the genetic variance into additional components specific to inbred populations, we show that dominance components can explain a substantial part of the genetic variance of inbred populations. We also show that ignoring these components leads to an upward bias in the predicted response to selection. Finally, we show that when considering the effect of dominance, the short-term evolutionary potential of populations remains comparable across the entire gradient in outcrossing rates, and genetic associations can even make selfing populations more evolvable on the longer term, reconciling theoretical, and empirical results.
  •  
4.
  • Deflem, Io S., et al. (author)
  • Predicting fish community responses to environmental policy targets
  • 2021
  • In: Biodiversity and Conservation. - : Springer Science and Business Media LLC. - 0960-3115 .- 1572-9710. ; 30:5, s. 1457-1478
  • Journal article (peer-reviewed)abstract
    • The European Union adopted the Water Framework Directive (WFD) in the year 2000 to tackle the rapid degradation of freshwater systems. However, biological, hydromorphological, and physico-chemical water quality targets are currently not met, and identifying successful policy implementation and management actions is of key importance. We built a joint species distribution model for riverine fish in Flanders (Belgium) to better understand the response of fish communities to current environmental policy goals. Environmental covariates included physico-chemical variables and hydromorphological quality indices, while waterway distances accounted for spatial effects. We detected strong effects of physico-chemistry on fish species’ distributions. Evaluation of fish community responses to simulated policy scenarios revealed that targeting a ‘good’ status, following the WFD, increases average species richness with a fraction of species (0.13–0.69 change in accumulated occurrence probabilities). Targeting a ‘very good’ status, however, predicted an increase of 0.17–1.38 in average species richness. These simulations indicated that riverbed quality, nitrogen, and conductivity levels should be the focal point of policy. However, the weak response of species to a ‘good’ quality together with the complexity of nutrient-associated problems, suggest a challenging future for river restoration in Flanders.
  •  
5.
  • Mattila, Anniina L.K., et al. (author)
  • Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly
  • 2021
  • In: PeerJ. - : PeerJ. - 2167-8359. ; 9
  • Journal article (peer-reviewed)abstract
    • Chemical defences against predators underlie the evolution of aposematic coloration and mimicry, which are classic examples of adaptive evolution. Surprisingly little is known about the roles of ecological and evolutionary processes maintaining defence variation, and how they may feedback to shape the evolutionary dynamics of species. Cyanogenic Heliconius butterflies exhibit diverse warning color patterns and mimicry, thus providing a useful framework for investigating these questions. We studied intraspecific variation in de novo biosynthesized cyanogenic toxicity and its potential ecological and evolutionary sources in wild populations of Heliconius erato along environmental gradients, in common-garden broods and with feeding treatments. Our results demonstrate substantial intraspecific variation, including detectable variation among broods reared in a common garden. The latter estimate suggests considerable evolutionary potential in this trait, although predicting the response to selection is likely complicated due to the observed skewed distribution of toxicity values and the signatures of maternal contributions to the inheritance of toxicity. Larval diet contributed little to toxicity variation. Furthermore, toxicity profiles were similar along steep rainfall and altitudinal gradients, providing little evidence for these factors explaining variation in biosynthesized toxicity in natural populations. In contrast, there were striking differences in the chemical profiles of H. erato from geographically distant populations, implying potential local adaptation in the acquisition mechanisms and levels of defensive compounds. The results highlight the extensive variation and potential for adaptive evolution in defense traits for aposematic and mimetic species, which may contribute to the high diversity often found in these systems.
  •  
6.
  • Opedal, Øystein H. (author)
  • A FUNCTIONAL VIEW REVEALS SUBSTANTIAL PREDICTABILITY OF POLLINATOR-MEDIATED SELECTION
  • 2021
  • In: Journal of Pollination Ecology. - : International Commission for Plant Pollinator Relations. - 1920-7603. ; 29, s. 273-288
  • Research review (peer-reviewed)abstract
    • A predictive understanding of adaptation to changing environments hinges on a mechanistic understanding of the extent and causes of variation in natural selection. Estimating variation in selection is difficult due to the complex relationships between phenotypic traits and fitness, and the uncertainty associated with individual selection estimates. Plant-pollinator interactions provide ideal systems for understanding variation in selection and its predictability, because both the selective agents (pollinators) and the process linking phenotypes to fitness (pollination) are generally known. Through examples from the pollination literature, I discuss how explicit consideration of the functional mechanisms underlying trait-performance relationships can clarify the relationship between traits and fitness, and how variation in the ecological context that generates selection can help disentangle biologically important variation in selection from sampling variation. I then evaluate the predictability of variation in pollinator-mediated selection through a survey, reanalysis, and synthesis of results from the literature. The synthesis demonstrates that pollinator-mediated selection often varies substantially among trait functional groups, as well as in time and space. Covariance between patterns of selection and ecological variables provides additional support for the biological importance of observed selection, but the detection of such covariance depends on careful choice of relevant predictor variables as well as consideration of quantitative measurements and their meaning, an aspect often neglected in selection studies.
  •  
7.
  • Opedal, Øystein H., et al. (author)
  • Herbivores reduce seedling recruitment in alpine plant communities
  • 2021
  • In: Nordic Journal of Botany. - : Wiley. - 0107-055X .- 1756-1051. ; 39:2
  • Journal article (peer-reviewed)abstract
    • Through changes in climate and other environmental factors, alpine tundra ecosystems are subject to increased cover of erect shrubs, reduced predictability of rodent dynamics and changes in wild and domesticated herbivore densities. To predict the dynamics of these ecosystems, we need to understand how these simultaneous changes affect alpine vegetation. In the long term, vegetation dynamics may depend critically on seedling recruitment. To study drivers of alpine plant seedling recruitment, we set up a field experiment where we manipulated the opportunity for plant–plant interactions through vegetation removal and introduction of willow transplants, the occurrence of herbivory through caging of plots, and then sowed 14 species into the plots. We replicated the experiment in three common alpine vegetation types (heath, meadow and Salix shrubland) and recorded seedling emergence and survival over five years. Strong effects of vegetation removal and substantial differences in recruitment among dominant vegetation types suggested important effects of local vegetation on the recruitment success of vascular-plant seedlings. Similarly, herbivore exclusion had strong positive effects on recruitment success. This effect arose primarily via reduced seedling mortality in plots from which herbivores had been experimentally excluded and became noticeably stronger over time. In contrast, we detected no consistent effects of experimental willow shrub introduction on seedling recruitment. These results demonstrate that large and small herbivores can affect alpine plant seedling recruitment negatively by trampling and feeding on seedlings. Importantly, the effects became stronger over time, suggesting that effects of herbivory on seedling recruitment accumulates over time and may relate to recruitment phases beyond initial seedling emergence.
  •  
8.
  • Wells, Harry B.M., et al. (author)
  • Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species' traits
  • 2021
  • In: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 90:11, s. 2510-2522
  • Journal article (peer-reviewed)abstract
    • The extinction of 80% of megaherbivore (>1,000 kg) species towards the end of the Pleistocene altered vegetation structure, fire dynamics and nutrient cycling world-wide. Ecologists have proposed (re)introducing megaherbivores or their ecological analogues to restore lost ecosystem functions and reinforce extant but declining megaherbivore populations. However, the effects of megaherbivores on smaller herbivores are poorly understood. We used long-term exclusion experiments and multispecies hierarchical models fitted to dung counts to test (a) the effect of megaherbivores (elephant and giraffe) on the occurrence (dung presence) and use intensity (dung pile density) of mesoherbivores (2–1,000 kg), and (b) the extent to which the responses of each mesoherbivore species was predictable based on their traits (diet and shoulder height) and phylogenetic relatedness. Megaherbivores increased the predicted occurrence and use intensity of zebras but reduced the occurrence and use intensity of several other mesoherbivore species. The negative effect of megaherbivores on mesoherbivore occurrence was stronger for shorter species, regardless of diet or relatedness. Megaherbivores substantially reduced the expected total use intensity (i.e. cumulative dung density of all species) of mesoherbivores, but only minimally reduced the expected species richness (i.e. cumulative predicted occurrence probabilities of all species) of mesoherbivores (by <1 species). Simulated extirpation of megaherbivores altered use intensity by mesoherbivores, which should be considered during (re)introductions of megaherbivores or their ecological proxies. Species' traits (in this case shoulder height) may be more reliable predictors of mesoherbivores' responses to megaherbivores than phylogenetic relatedness, and may be useful for predicting responses of data-limited species.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view