SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ottaviani L.) srt2:(2010-2014)"

Search: WFRF:(Ottaviani L.) > (2010-2014)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bécoulet, A., et al. (author)
  • Science and technology research and development in support to ITER and the Broader Approach at CEA
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10
  • Journal article (peer-reviewed)abstract
    • In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
  •  
2.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
4.
  • Ferrario, M., et al. (author)
  • IRIDE : Interdisciplinary research infrastructure based on dual electron linacs and lasers
  • 2014
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 740, s. 138-146
  • Journal article (peer-reviewed)abstract
    • This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. [RIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.
  •  
5.
  • Imbeaux, F., et al. (author)
  • A generic data structure for integrated modelling of tokamak physics and subsystems
  • 2010
  • In: Computer Physics Communications. - : Elsevier BV. - 0010-4655. ; 181:6, s. 987-998
  • Journal article (peer-reviewed)abstract
    • The European Integrated Tokamak Modelling Task Force (ITM-TF) is developing a new type of fully modular and flexible integrated tokamak simulator, which will allow a large variety of simulation types This ambitious goal requires new concepts of data structure and workflow organisation, which are described for the first time in this paper The backbone of the system is a physics- and workflow-oriented data structure which allows for the deployment of a fully modular and flexible workflow organisation. The data structure is designed to be generic for any tokamak device and can be used to address physics simulation results, experimental data (including description of subsystem hardware) and engineering issues (C) 2010 Elsevier B.V All rights reserved
  •  
6.
  • Issa, F., et al. (author)
  • Nuclear radiation detectors based on 4H-SiC p+-n junction
  • 2014
  • In: 15th International Conference on Silicon Carbide and Related Materials, ICSCRM 2013. - 9783038350101 ; , s. 1046-1049
  • Conference paper (peer-reviewed)abstract
    • Silicon carbide (SiC) radiation detectors were realized by 10B implantation into the metal contact in order to avoid implantation-related defects within the sensitive area of the 4H-SiC pn junction. No post implantation annealing was performed. Such detectors respond to thermal neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity.
  •  
7.
  • Issa, F., et al. (author)
  • Radiation silicon carbide detectors based on ion implantation of boron
  • 2014
  • In: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 61:4, s. 2105-2111
  • Journal article (peer-reviewed)abstract
    • Radiation detectors based on radiation-hardened semiconductor such as silicon carbide (SiC), have received considerable attention in many applications such as in outer space, high energy physics experiments, gas and oil prospection, and nuclear reactors. In the frame work of the European project I-SMART (Innovative Sensor for Material Ageing and Radiation Testing), we demonstrated for the first time the reliability of thermal neutron detectors realized by standard ion implantation of boron atoms to form a neutron converter layer (NCL). Two types of detectors were realized; the first was implanted by aluminum to create the p+ - layer, and then implanted by boron ( 10 B) to realize the NCL. The second type was based on p+ - layer, and was implanted by 10B into the aluminum metallic contact in order to avoid implantation-related defect within the sensitive area. Both kinds of detectors reveal to respond to thermal neutrons and gamma rays, showing consistent counting rates as a function of bias voltages, radiation intensity and type of shielding.
  •  
8.
  • Issa, F., et al. (author)
  • Radiation silicon carbide detectors based on ion implantation of boron
  • 2013
  • In: 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and Their Applications, ANIMMA 2013. - : IEEE. - 9781479910472 ; , s. 6727997-
  • Conference paper (peer-reviewed)abstract
    • Radiation detectors based on radiation-hardened semiconductor such as silicon carbide (SiC), have received considerable attention in many applications such as in outer space, high energy physics experiments, gas and oil prospection, and nuclear reactors. For the first time it was demonstrated the reliability of thermal neutron detectors realized by standard ion implantation of boron layer as a neutron converter layer. Moreover, these detectors respond to thermal neutrons and gamma rays showing different counting rates at different voltages and under different types of shielding.
  •  
9.
  • Vervisch, V., et al. (author)
  • Nuclear radiation detector based on ion implanted p-n junction in 4H-SiC
  • 2013
  • In: 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and Their Applications, ANIMMA 2013. - : IEEE. - 9781479910472 ; , s. 6728002-
  • Conference paper (peer-reviewed)abstract
    • In this paper, we propose a new device detector based on ion implanted p-n junction in 4H-SiC for nuclear instrumentation. We showed the interest to use 10Boron as a Neutron Converter Layer in order to detect thermal neutrons. We present the main results obtained during irradiation tests performed in the Belgian Reactor 1. We show the capability of our detector by means of first results of the detector response at different reverse voltage biases and at different reactor power.
  •  
10.
  • Vervisch, Vanessa, et al. (author)
  • Thermal neutron detection enhancement by 10B implantation in silicon carbide sensor
  • 2014
  • In: Materials Research Society Symposium Proceedings. - : Springer Science and Business Media LLC.
  • Conference paper (peer-reviewed)abstract
    • The purpose of this paper is to propose the enhancement of device detectors based on p-n junction in 4H-SiC for nuclear instrumentation. Particular emphasis is placed on the interest on using Boron isotope 10 as a Neutron Converter Layer in order to detect thermal neutrons. Here, we present the main results obtained during several irradiation tests performed in the Belgian Reactor 1 (BR1). We show the capability of our detectors by means of first results of the detector response at different reverse voltage biases and at different reactor power.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view