SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pane F.) srt2:(2015-2019)"

Search: WFRF:(Pane F.) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Carreras, A., et al. (author)
  • In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model
  • 2019
  • In: Bmc Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 17
  • Journal article (peer-reviewed)abstract
    • Background Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles.ResultsTo address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified.ConclusionsHere, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.
  •  
3.
  • Cross, N C P, et al. (author)
  • Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia.
  • 2015
  • In: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 29:5, s. 999-1003
  • Research review (peer-reviewed)abstract
    • Treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors has advanced to a stage where many patients achieve very low or undetectable levels of disease. Remarkably, some of these patients remain in sustained remission when treatment is withdrawn, suggesting that they may be at least operationally cured of their disease. Accurate definition of deep molecular responses (MRs) is therefore increasingly important for optimal patient management and comparison of independent data sets. We previously published proposals for broad standardized definitions of MR at different levels of sensitivity. Here we present detailed laboratory recommendations, developed as part of the European Treatment and Outcome Study for CML (EUTOS), to enable testing laboratories to score MR in a reproducible manner for CML patients expressing the most common BCR-ABL1 variants.Leukemia advance online publication, 27 February 2015; doi:10.1038/leu.2015.29.
  •  
4.
  •  
5.
  • Pfeifer, H., et al. (author)
  • Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph plus ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1
  • 2019
  • In: Leukemia. - : NATURE PUBLISHING GROUP. - 0887-6924 .- 1476-5551. ; 33:8, s. 1910-1922
  • Journal article (peer-reviewed)abstract
    • Minimal residual disease (MRD) is a powerful prognostic factor in acute lymphoblastic leukemia (ALL) and is used for patient stratification and treatment decisions, but its precise role in Philadelphia chromosome positive ALL is less clear. This uncertainty results largely from methodological differences relating to the use of real-time quantitative PCR (qRT-PCR) to measure BCR-ABL1 transcript levels for MRD analysis. We here describe the first results by the EURO-MRD consortium on standardization of qRT-PCR for the e1a2 BCR-ABL1 transcript in Ph + ALL, designed to overcome the lack of standardisation of laboratory procedures and data interpretation. Standardised use of EAC primer/probe sets and of centrally prepared plasmid standards had the greatest impact on reducing interlaboratory variability. In QC1 the proportion of analyses with BCR-ABL1/ABL1 ratios within half a log difference were 40/67 (60%) and 52/67 (78%) at 10(-3) and 36/67 (53%) and 53/67 (79%) at 10(-4)BCR-ABL1/ABL1. Standardized RNA extraction, cDNA synthesis and cycler platforms did not improve results further, whereas stringent application of technical criteria for assay quality and uniform criteria for data interpretation and reporting were essential. We provide detailed laboratory recommendations for the standardized MRD analysis in routine diagnostic settings and in multicenter clinical trials for Ph + ALL.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view