SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pearson Johansson Joel 1984 ) srt2:(2024)"

Search: WFRF:(Pearson Johansson Joel 1984 ) > (2024)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dwomoh, Arianna M., et al. (author)
  • Evaluating the Consistency of Cosmological Distances Using Supernova Siblings in the Near-infrared
  • 2024
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 965:1
  • Journal article (peer-reviewed)abstract
    • The study of supernova (SN) siblings, supernovae with the same host galaxy, is an important avenue for understanding and measuring the properties of Type Ia SN Ia light curves (LCs). Thus far, sibling analyses have mainly focused on optical LC data. Considering that LCs in the near-infrared (NIR) are expected to be better standard candles than those in the optical, we carry out the first analysis compiling SN siblings with only NIR data. We perform an extensive literature search of all SN siblings and find six sets of siblings with published NIR photometry. We calibrate each set of siblings ensuring they are on homogeneous photometric systems, fit the LCs with the SALT3-NIR and SNooPy models, and find median absolute differences in μ values between siblings of 0.248 and 0.186 mag, respectively. To evaluate the significance of these differences beyond measurement noise, we run simulations that mimic these LCs and provide an estimate for uncertainty on these median absolute differences of ∼0.052 mag, and we find that, statistically, our analysis rules out the nonexistence of intrinsic scatter in the NIR at the 99% level. When comparing the same sets of SN siblings, we observe a median absolute difference in μ values between siblings of 0.177 mag when using optical data alone as compared to 0.186 mag when using NIR data alone. It is unclear if these results may be due to limited statistics or poor quality NIR data, all of which will be improved with the Nancy Grace Roman Space Telescope.
  •  
2.
  • Kwok, Lindsey A., et al. (author)
  • Ground-based and JWST Observations of SN 2022pul. II. Evidence from Nebular Spectroscopy for a Violent Merger in a Peculiar Type Ia Supernova
  • 2024
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 966:1
  • Journal article (peer-reviewed)abstract
    • We present an analysis of ground-based and JWST observations of SN 2022pul, a peculiar "03fg-like" (or "super-Chandrasekhar") Type Ia supernova (SN Ia), in the nebular phase at 338 days postexplosion. Our combined spectrum continuously covers 0.4–14 μm and includes the first mid-infrared spectrum of a 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization state, asymmetric emission-line profiles, stronger emission from the intermediate-mass elements (IMEs) argon and calcium, weaker emission from iron-group elements (IGEs), and the first unambiguous detection of neon in a SN Ia. A strong, broad, centrally peaked [Ne ii] line at 12.81 μm was previously predicted as a hallmark of "violent merger" SN Ia models, where dynamical interaction between two sub-MCh white dwarfs (WDs) causes disruption of the lower-mass WD and detonation of the other. The violent merger scenario was already a leading hypothesis for 03fg-like SNe Ia; in SN 2022pul it can explain the large-scale ejecta asymmetries seen between the IMEs and IGEs and the central location of narrow oxygen and broad neon. We modify extant models to add clumping of the ejecta to reproduce the optical iron emission better, and add mass in the innermost region (<2000 km s−1) to account for the observed narrow [O i] λλ6300, 6364 emission. A violent WD–WD merger explains many of the observations of SN 2022pul, and our results favor this model interpretation for the subclass of 03fg-like SNe Ia.
  •  
3.
  • Pearson Johansson, Joel, 1984- (author)
  • Ground-based and JWST Observations of SN 2022pul. I. Unusual Signatures of Carbon, Oxygen, and Circumstellar Interaction in a Peculiar Type Ia Supernova
  • 2024
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 960:1
  • Journal article (peer-reviewed)abstract
    • Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively "03fg-like" SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB = −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peak B-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [O i] λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Ca ii] λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Fe iii to Fe ii ionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (with T ≈ 500 K), combined with prominent [O i] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.
  •  
4.
  • Schulze, Steve, 1980-, et al. (author)
  • The complex circumstellar environment of supernova 2023ixf
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687. ; 627:8005
  • Journal article (peer-reviewed)abstract
    • The early evolution of a supernova (SN) can reveal information about the environment and the progenitor star. When a star explodes in vacuum, the first photons to escape from its surface appear as a brief, hours-long shock-breakout flare1,2, followed by a cooling phase of emission. However, for stars exploding within a distribution of dense, optically thick circumstellar material (CSM), the first photons escape from the material beyond the stellar edge and the duration of the initial flare can extend to several days, during which the escaping emission indicates photospheric heating3. Early serendipitous observations2,4 that lacked ultraviolet (UV) data were unable to determine whether the early emission is heating or cooling and hence the nature of the early explosion event. Here we report UV spectra of the nearby SN 2023ixf in the galaxy Messier 101 (M101). Using the UV data as well as a comprehensive set of further multiwavelength observations, we temporally resolve the emergence of the explosion shock from a thick medium heated by the SN emission. We derive a reliable bolometric light curve that indicates that the shock breaks out from a dense layer with a radius substantially larger than typical supergiants.
  •  
5.
  • Stritzinger, M. D., et al. (author)
  • The carbon-rich type Ic supernova 2016adj in the iconic dust lane of Centaurus A : Potential signatures of an interaction with circumstellar hydrogen
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Journal article (peer-reviewed)abstract
    • We present a comprehensive data set of supernova (SN) 2016adj located within the central dust lane of Centaurus A. SN 2016adj is significantly reddened and after correcting the peak apparent B-band magnitude (mB = 17.48 ± 0.05) for Milky Way reddening and our inferred host-galaxy reddening parameters (i.e., RVhost = 5.7±0.7 and AVhost = 6.3 ± 0.2 mag), we estimated it reached a peak absolute magnitude of MB ∼ −18. A detailed inspection of the optical and near-infrared (NIR) spectroscopic time series reveals a carbon-rich SN Ic and not a SN Ib/IIb as previously suggested in the literature. The NIR spectra show prevalent carbon-monoxide formation occurring already by +41 days past B-band maximum, which is ≈11 days earlier than previously reported in the literature for this object. Interestingly, around two months past maximum, the NIR spectrum of SN 2016adj begins to exhibit H features, with a +97 days medium resolution spectrum revealing both Paschen and Bracket lines with absorption minima of ∼2000 km s−1, full-width-half-maximum emission velocities of ∼1000 km s−1, and emission line ratios consistent with a dense emission region. We speculate that these attributes are due to a circumstellar interaction (CSI) between the rapidly expanding SN ejecta and a H-rich shell of material that formed during the pre-SN phase. A bolometric light curve was constructed and a semi-analytical model fit suggests the SN synthesized 0.5 M⊙ of 56Ni and ejected 4.7 M⊙ of material, though these values should be approached with caution given the large uncertainties associated with the adopted reddening parameters and known light echo emission. Finally, inspection of the Hubble Space Telescope archival data yielded no progenitor detection.
  •  
6.
  • Thorp, Stephen, 1996-, et al. (author)
  • JWST Photometric Time-delay and Magnification Measurements for the Triply Imaged Type Ia SN H0pe at z=1.78
  • 2024
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 967:1
  • Journal article (peer-reviewed)abstract
    • Supernova (SN) SN H0pe is a gravitationally lensed, triply imaged, Type Ia SN (SN Ia) discovered in James Webb Space Telescope imaging of the PLCK G165.7+67.0 cluster of galaxies. Well-observed multiply imaged SNe provide a rare opportunity to constrain the Hubble constant (H-0), by measuring the relative time delay between the images and modeling the foreground mass distribution. SN H0pe is located at z = 1.783 and is the first SN Ia with sufficient light-curve sampling and long enough time delays for an H-0 inference. Here we present photometric time-delay measurements and SN properties of SN H0pe. Using JWST/NIRCam photometry, we measure time delays of Delta t(ab) = -116.6(-9.3)(+10.8) observer-frame days and Delta t(cb) = -48.6(-4.0)(+3.6) observer-frame days relative to the last image to arrive (image 2b; all uncertainties are 1 sigma), which corresponds to a similar to 5.6% uncertainty contribution for H-0 assuming 70 km s(-1) Mpc(-1). We also constrain the absolute magnification of each image to mu(a) = 4.3(-1.8)(+1.6), mu(b) = 7.6(-2.6)(+3.6), mu(c) = 6.4(-1.5)(+1.6) by comparing the observed peak near-IR magnitude of SN H0pe to the nonlensed population of SNe Ia.
  •  
7.
  • Zsíros, Szanna, et al. (author)
  • Serendipitous detection of the dusty Type IIL SN 1980K with JWST/MIRI
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:1, s. 155-168
  • Journal article (peer-reviewed)abstract
    • We present mid-infrared (mid-IR) imaging of the Type IIL supernova (SN) 1980K with the JWST more than 40 yr post-explosion. SN 1980K, located in the nearby (D ≈ 7 Mpc) ‘SN factory’ galaxy NGC 6946, was serendipitously captured in JWST/MIRI images taken of the field of SN 2004et in the same galaxy. SN 1980K serves as a promising candidate for studying the transitional phase between young SNe and older SN remnants and also provides a great opportunity to investigate its the close environment. SN 1980K can be identified as a clear and bright point source in all eight MIRI filters from F560W up to F2550W. We fit analytical dust models to the mid-IR spectral energy distribution that reveal a large amount (Md ≈ 0.002 M⊙) of Si-dominated dust at Tdust≈150 K (accompanied by a hotter dust/gas component), and also computed numerical SED dust models. Radiative transfer modelling of a late-time optical spectrum obtained recently with Keck discloses that an even larger (∼0.24–0.58 M⊙) amount of dust is needed in order for selective extinction to explain the asymmetric line profile shapes observed in SN 1980K. As a conclusion, with JWST, we may see i) pre-existing circumstellar dust heated collisionally (or, partly radiatively), analogous to the equatorial ring of SN 1987A, or ii) the mid-IR component of the presumed newly-formed dust, accompanied by much more colder dust present in the ejecta (as suggested by the late-time the optical spectra).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view