SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pfaff Sebastian) srt2:(2021)"

Sökning: WFRF:(Pfaff Sebastian) > (2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bao, Yupan, et al. (författare)
  • Single-shot 3D imaging of hydroxyl radicals in the vicinity of a gliding arc discharge
  • 2021
  • Ingår i: Plasma Sources Science and Technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 30:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical processing by plasma is utilized in many applications. Plasma-related studies, however, are challenging to carry out due to plasmas' transient and unpredictable behavior, excessive luminosity emission, 3D complexity and aggressive chemistry and physiochemical interactions that are easily affected by external probing. Laser-induced fluorescence is a robust technique for non-intrusive investigations of plasma-produced species. The hydroxyl radical (OH) is an interesting molecule to target, as it is easily produced by plasmas in humid air. In this letter, we present 3D distributions of ground state OH radicals in the vicinity of a glow-type gliding arc plasma. Such radical distributions, with minimal plasma emission, are captured instantaneously in one single camera acquisition by combining structured laser illumination and a lock-in based imaging analysis method called FRAME. The orientation of the plasma discharge can be reconstructed from the 3D data matrix, which can then be used to calculate 2D distributions of ground state OH radicals in a plane perpendicular to the orientation of the plasma channel. Our results indicate that OH distributions around a gliding arc are strongly affected by gas dynamics. We believe that the ability to instantaneously capture 3D transient molecular distributions in a plasma discharge, with minimal plasma emission interference, will have a strong impact on the plasma community for in-situ investigations of plasma-induced chemistry and physics.
  •  
2.
  • Linpé, Weronica, et al. (författare)
  • Revisiting Optical Reflectance from Au(111) Electrode Surfaces with Combined High-Energy Surface X-ray Diffraction
  • 2021
  • Ingår i: Journal of the Electrochemical Society. - : Electrochemical Society. - 0013-4651 .- 1945-7111. ; 168:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We have combined high-energy surface X-ray diffraction (HESXRD) with 2D surface optical reflectance (2D-SOR) to perform in situ electrochemical measurements of a Au(111) electrode in 0.1 M HClO4 electrolyte. We show that electrochemically induced changes to Au(111) surface during cyclic voltammetry can be simultaneously observed with 2D-SOR and HESXRD. We discuss how small one atom high 1x1 islands, accommodating excess atoms after the lifting of the surface reconstruction, can lead to discrepancies between the two techniques. The use of HESXRD allows us to simultaneously detect parts of the truncation rods from the (1 x 1) surface termination and the p x root 3 electrochemically induced surface reconstruction, during cyclic voltammetry. The presence of reconstruction phenomena is shown to not depend on having an ideally prepared surface and can in fact be observed after going to very oxidizing potentials. 2D-SOR can also detect the oxidation of the Au surface, however no oxide peaks are detected in the HESXRD signal, which is evidence that any Au oxide is X-ray amorphous.
  •  
3.
  • Pfaff, Sebastian, et al. (författare)
  • Operando Reflectance Microscopy on Polycrystalline Surfaces in Thermal Catalysis, Electrocatalysis, and Corrosion
  • 2021
  • Ingår i: ACS applied materials & interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:16, s. 19530-19540
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a microscope with a spatial resolution of 5 μm, which can be used to image the two-dimensional surface optical reflectance (2D-SOR) of polycrystalline samples in operando conditions. Within the field of surface science, operando tools that give information about the surface structure or chemistry of a sample under realistic experimental conditions have proven to be very valuable to understand the intrinsic reaction mechanisms in thermal catalysis, electrocatalysis, and corrosion science. To study heterogeneous surfaces in situ, the experimental technique must both have spatial resolution and be able to probe through gas or electrolyte. Traditional electron-based surface science techniques are difficult to use under high gas pressure conditions or in an electrolyte due to the short mean free path of electrons. Since it uses visible light, SOR can easily be used under high gas pressure conditions and in the presence of an electrolyte. In this work, we use SOR in combination with a light microscope to gain information about the surface under realistic experimental conditions. We demonstrate this by studying the different grains of three polycrystalline samples: Pd during CO oxidation, Au in electrocatalysis, and duplex stainless steel in corrosion. Optical light-based techniques such as SOR could prove to be a good alternative or addition to more complicated techniques in improving our understanding of complex polycrystalline surfaces with operando measurements.
  •  
4.
  • Rämisch, Lisa, et al. (författare)
  • Combining PM-IRRAS with optical imaging techniques for operando studies of CO oxidation
  • 2021
  • Ingår i: CLEO : QELS_Fundamental Science, CLEO: QELS 2021 - QELS_Fundamental Science, CLEO: QELS 2021. - 9781557528209
  • Konferensbidrag (refereegranskat)abstract
    • To bridge the pressure gap in heterogeneous catalysis and maximize the gain of operando information, we have combined PM-IRRAS with the imaging techniques SOR and PLIF and measured CO oxidation on a Pd(100) crystal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy