SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Puentes Adriana) srt2:(2020-2023)"

Search: WFRF:(Puentes Adriana) > (2020-2023)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Amelia, Tudoran, et al. (author)
  • A major forest insect pest, the pine weevil Hylobius abietis, is more susceptible to Diptera- than Coleoptera-targeted Bacillus thuringiensis strains
  • 2021
  • In: Pest Management Science. - : Wiley. - 1526-498X .- 1526-4998. ; 77, s. 1303-1315
  • Journal article (peer-reviewed)abstract
    • BACKGROUND The pine weevil (Hylobius abietis) is a major forest regeneration pest causing high levels of seedling mortality and economic losses. Current management relies on silviculture, stem coatings and insecticides. Here we evaluated for the first time the effects of Bacillus thuringiensis (Bt) strains on H. abietis adults: two producing the Coleoptera-targeted toxins Cry3Aa (Bt tenebrionis NB-176) and Cry8Da (Bt galleriae SDS-502), and one producing the Diptera-targeted Cry10A (Bt israelensis AM65-52). Choice and nonchoice assays using individual and mixtures of Bt formulations, containing these strains respectively, were conducted.RESULTS We found that Bt had toxic and lethal effects on H. abietis, but effects varied with strain and formulation concentration. The Diptera-targeted Bt israelensis had the most negative effects on weevil weight, feeding and mortality (70-82% feeding reduction, 65-82% greater mortality than control), whereas the effect was lower for the Coleoptera-specific Bt tenebrionis (38-42%; 37-42%) and Bt galleriae (11-30%; 15-32%). Reduced weevil feeding was observed after 3 days, and the highest mortality occurred 7-14 days following Bt exposure. However, we found no synergistic toxic effects, and no formulation combination was better than Bt israelensis alone at reducing consumption and survival. Also, pine weevils were not deterred by Bt, feeding equally on Bt-treated and non-Bt treated food.CONCLUSION There is potential to develop forest pest management measures against H. abietis that include Bt, but only the Diptera-targeted Bt israelensis would provide effective seedling protection. Its Diptera-specificity may need reconsideration, and evaluation of other Bt strains/toxins against H. abietis would be of interest.
  •  
2.
  • Amelia, Tudoran, et al. (author)
  • Using associational effects of European beech on Norway spruce to mitigate damage by a forest regeneration pest, the pine weevil Hylobius abietis
  • 2021
  • In: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 486
  • Journal article (peer-reviewed)abstract
    • Forest regeneration can be compromised by insect damage to newly-planted conifer seedlings, with the pine weevil, Hylobius abietis, being the most economically important pest in Europe. Seedling protection strategies include physical barriers, silvicultural measures and insecticides, while the potential benefits of Associational Effects (AE) have been little explored. Associational Resistance (AR) or Susceptibility (AS) arise when neighbouring plants decrease or increase, respectively, the likelihood and extent of attack on a focal plant. We investigated the potential of European beech, Fagus sylvatica, to mediate AE for Norway spruce, Picea abies, seedlings against pine weevil damage. First, we examined the effects of neighbor identity on damage to P. abies at a small scale, using choice arenas in the lab. Then, in the field, we examined these effects at a larger scale using plots containing only Norway spruce, or both species. We found that P. abies seedlings were attacked and damaged less by weevils when beech was their close neighbor, relative to having another Norway spruce as a neighbor in the lab. Yet, no difference in damage between only spruce and mixed seedling plots was found in the field. Our results indicate that the susceptibility of P. abies to H. abietis can be influenced by neighbor identity, and effects can vary with inter-plant distance. In close proximity, the presence of the non-host F. sylvatica can alter pine weevil feeding behaviour and thus, has the potential to mediate AR. However, these associational effects appear not to provide enhanced seedling protection at a larger scale.
  •  
3.
  • Berggren Nieto, Kristina, et al. (author)
  • Synergistic effects of methyl jasmonate treatment and propagation method on Norway spruce resistance against a bark-feeding insect
  • 2023
  • In: Frontiers in Plant Science. - 1664-462X. ; 14
  • Journal article (peer-reviewed)abstract
    • Utilizing plants with enhanced resistance traits is gaining interest in plant protection. Two strategies are especially promising for increasing resistance against a forest insect pest, the pine weevil (Hylobius abietis): exogenous application of the plant defense hormone methyl jasmonate (MeJA), and production of plants through the clonal propagation method somatic embryogenesis (SE). Here, we quantified and compared the separate and combined effects of SE and MeJA on Norway spruce resistance to pine weevil damage. Plants produced via SE (emblings) and nursery seedlings (containerized and bare-root), were treated (or not) with MeJA and exposed to pine weevils in the field (followed for 3 years) and in the lab (with a non-choice experiment). Firstly, we found that SE and MeJA independently decreased pine weevil damage to Norway spruce plants in the field by 32-33% and 53-59%, respectively, compared to untreated containerized and bare-root seedlings. Secondly, SE and MeJA together reduced damage to an even greater extent, with treated emblings receiving 86-87% less damage when compared to either untreated containerized or bare-root seedlings in the field, and by 48% in the lab. Moreover, MeJA-treated emblings experienced 98% lower mortality than untreated containerized seedlings, and this high level of survival was similar to that experienced by treated bare-root seedlings. These positive effects on survival remained for MeJA-treated emblings across the 3-year experimental period. We conclude that SE and MeJA have the potential to work synergistically to improve plants' ability to resist damage, and can thus confer a strong plant protection advantage. The mechanisms underlying these responses merit further examination.
  •  
4.
  • Chen, Yayuan, et al. (author)
  • Comparing Exogenous Methods to Induce Plant-Resistance Against a Bark-Feeding Insect
  • 2021
  • In: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 12
  • Journal article (peer-reviewed)abstract
    • Exogenous application of the plant hormone methyl jasmonate (MeJA) can trigger induced plant defenses against herbivores, and has been shown to provide protection against insect herbivory in conifer seedlings. Other methods, such as mechanical damage to seedlings, can also induce plant defenses, yet few have been compared to MeJA and most studies lack subsequent herbivory feeding tests. We conducted two lab experiments to: (1) compare the efficacy of MeJA to mechanical damage treatments that could also induce seedling resistance, (2) examine if subsequent insect damage differs depending on the time since induction treatments occurred, and (3) assess if these induction methods affect plant growth. We compared Scots pine (Pinus sylvestris) seedlings sprayed with MeJA (10 or 15 mM) to seedlings subjected to four different mechanical bark damage treatments (two different bark wound sizes, needle-piercing damage, root damage) and previous pine weevil (Hylobius abietis) damage as a reference treatment. The seedlings were exposed to pine weevils 12 or 32 days after treatments (early and late exposure, hereafter), and resistance was measured as the amount of damage received by plants. At early exposure, seedlings treated with needle-piercing damage received significantly more subsequent pine weevil feeding damage than those treated with MeJA. Seedlings treated with MeJA and needle-piercing damage received 84% less and 250% more pine weevil feeding, respectively, relative to control seedlings. The other treatments did not differ statistically from control or MeJA in terms of subsequent pine weevil damage. For the late exposure group, plants in all induction treatments tended to receive less pine weevil feeding (yet this was not statistically significant) compared to control seedlings. On the other hand, MeJA significantly slowed down seedling growth relative to control and all other induction treatments. Overall, the mechanical damage treatments appeared to have no or variable effects on seedling resistance. One of the treatments, needle-piercing damage, actually increased pine weevil feeding at early exposure. These results therefore suggest that mechanical damage shows little potential as a plant protection measure to reduce feeding by a bark-chewing insect.
  •  
5.
  • Chen, Yayuan, et al. (author)
  • Seasonal timing and recurrence of methyl jasmonate treatment influence pine weevil damage to Norway spruce seedlings
  • 2021
  • In: New Forests. - : Springer Science and Business Media LLC. - 0169-4286 .- 1573-5095. ; 52, s. 431-448
  • Journal article (peer-reviewed)abstract
    • Defense can be induced in conifer seedlings to reduce pine weevil (Hylobius abietis) damage, by treatment with the plant hormone methyl jasmonate (MJ). Few studies have addressed important practical issues regarding the use of MJ such as treatment incidence and timing, seedling age and its compatibility with plant nursery practices. We examined if levels of pine weevil damage depend on seasonal timing and recurrence of MJ treatment, and if the observed effects depend on plant age. Norway spruce (Picea abies) seedlings from two age cohorts (1 year and 1.5 years old) received four MJ treatments: MJ application before winter storage in the previous year, after winter storage but before spring/summer planting, repeated MJ application (both before winter storage, and before planting) or no MJ application at all. Pine weevil damage was evaluated in a lab and field experiment. We found that the timing and recurrence of MJ treatment affected the amount of damage inflicted by pine weevils in different ways, but these effects were consistent among age cohorts. MJ application before winter storage provided the most effective protection, and this reduction in damage was comparable to that provided by a currently used physical protection method against pine weevil feeding. Our results indicated that MJ can be applied in line with nursery practices (before winter storage) and provides adequate protection for two growing seasons.
  •  
6.
  • Puentes, Adriana, et al. (author)
  • Variation in Methyl Jasmonate-Induced Defense Among Norway Spruce Clones and Trade-Offs in Resistance Against a Fungal and an Insect Pest
  • 2021
  • In: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 12
  • Journal article (peer-reviewed)abstract
    • An essential component of plant defense is the change that occurs from a constitutive to an induced state following damage or infection. Exogenous application of the plant hormone methyl jasmonate (MeJA) has shown great potential to be used as a defense inducer prior to pest exposure, and could be used as a plant protection measure. Here, we examined (1) the importance of MeJA-mediated induction for Norway spruce (Picea abies) resistance against damage by the pine weevil Hylobius abietis, which poses a threat to seedling survival, and infection by the spruce bark beetle-associated blue-stain fungus Endoconidiophora polonica, (2) genotypic variation in MeJA-induced defense (terpene chemistry), and (3) correlations among resistance to each pest. In a semi-field experiment, we exposed rooted-cuttings from nine different Norway spruce clones to insect damage and fungal infection separately. Plants were treated with 0, 25, or 50 mM MeJA, and planted in blocks where only pine weevils were released, or in a separate block in which plants were fungus-inoculated or not (control group). As measures of resistance, stem area debarked and fungal lesion lengths were assessed, and as a measure of defensive capacity, terpene chemistry was examined. We found that MeJA treatment increased resistance to H. abietis and E. polonica, but effects varied with clone. Norway spruce clones that exhibited high constitutive resistance did not show large changes in area debarked or lesion length when MeJA-treated, and vice versa. Moreover, insect damage negatively correlated with fungal infection. Clones receiving little pine weevil damage experienced larger lesion lengths, and vice versa, both in the constitutive and induced states. Changes in absolute terpene concentrations occurred with MeJA treatment (but not on proportional terpene concentrations), however, variation in chemistry was mostly explained by differences between clones. We conclude that MeJA can enhance protection against H. abietis and E. polonica, but the extent of protection will depend on the importance of constitutive and induced resistance for the Norway spruce clone in question. Trade-offs among resistances do not necessarily hinder the use of MeJA, as clones that are constitutively more resistant to either pest, should show greater MeJA-induced resistance against the other.
  •  
7.
  • Santangelo, James S., et al. (author)
  • Global urban environmental change drives adaptation in white clover
  • 2022
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 375
  • Journal article (peer-reviewed)abstract
    • Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural dines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
  •  
8.
  • Zhang, Xiaoning, et al. (author)
  • Global change calls for novel plant protection: reviewing the potential of omnivorous plant-inhabiting arthropods as predators and plant defence inducers
  • 2021
  • In: Current Opinion in Insect Science. - : Elsevier BV. - 2214-5745 .- 2214-5753. ; 47, s. 103-110
  • Research review (peer-reviewed)abstract
    • Global change poses new challenges for pest management. Omnivorous predatory arthropods play an important role in pest management, yet their potential has not been fully explored. Not only do they consume prey, but their plant-feeding induces plant defences that decrease herbivores' performance, and increases production of volatiles that attract natural enemies. Growing evidence from different plant-arthropod systems indicates the generality of plant defence induction following omnivore plant-feeding. Furthermore, these responses appear to affect other organisms (e.g. plant viruses), altering multi-trophic interactions. Here, we review the dual role of omnivores (as predators and plant inducers), identify knowledge gaps and provide future perspectives to increase our understanding of omnivores' multiple functions, and how this can be applied to advance plant protection strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8
Type of publication
journal article (7)
research review (1)
Type of content
peer-reviewed (8)
Author/Editor
Puentes, Adriana (8)
Bylund, Helena (4)
Björkman, Christer (4)
Amelia, Tudoran (2)
Tack, Ayco J. M. (1)
Andrew, Nigel R. (1)
show more...
Borg-Karlson, Anna-K ... (1)
Alberti, Marina (1)
Pinho, Pedro (1)
Nordlander, Göran (1)
Laine, Anna Liisa (1)
Nordkvist, Michelle (1)
Zhao, Tao, 1969- (1)
Bonte, Dries (1)
del Val, Ek (1)
Branquinho, Cristina (1)
Peres-Neto, Pedro R. (1)
Klapwijk, Maartje (1)
Granath, Gustaf (1)
Berggren Nieto, Kris ... (1)
Crawford, Andrew J. (1)
Zhao, Zhigang (1)
Björklund, Niklas (1)
Fedderwitz, Frauke (1)
Classen, Aimée T. (1)
Sanders, Nathan J. (1)
Ellers, Jacintha (1)
Raeymaekers, Joost A ... (1)
Brans, Kristien, I (1)
Gagnon, Edeline (1)
Scheepens, J.F. (1)
Parachnowitsch, Amy ... (1)
Santangelo, James S. (1)
Ness, Rob W. (1)
Angeoletto, Fabio (1)
Anstett, Daniel N. (1)
Anstett, Julia (1)
Baena-Diaz, Fernanda (1)
Carlen, Elizabeth J. (1)
Chaves, Jaime A. (1)
Comerford, Mattheau ... (1)
Dyson, Karen (1)
Falahati-Anbaran, Mo ... (1)
Fellowes, Mark D. E. (1)
Hodgins, Kathryn A. (1)
Iñiguez-Armijos, Car ... (1)
Lázaro-Lobo, Adrián (1)
Moles, Angela T. (1)
Munshi-South, Jason (1)
Paule, Juraj (1)
show less...
University
Swedish University of Agricultural Sciences (8)
Royal Institute of Technology (1)
Uppsala University (1)
Stockholm University (1)
Örebro University (1)
Lund University (1)
show more...
Mid Sweden University (1)
show less...
Language
English (8)
Research subject (UKÄ/SCB)
Agricultural Sciences (7)
Natural sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view