SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rahaman S.) srt2:(2015-2019)"

Search: WFRF:(Rahaman S.) > (2015-2019)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Heine, M., et al. (author)
  • Determination of the neutron-capture rate of C-17 for r-process nucleosynthesis
  • 2017
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 95:1, s. Article no 014613 -
  • Journal article (peer-reviewed)abstract
    • With the (RB)-B-3-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of C-18 at a projectile energy around 425A MeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of C-17 into the ground state of C-18. Those data have been used to constrain theoretical calculations for transitions populating excited states in C-18. This allowed to derive the astrophysical cross section sigma(n gamma)*. accounting for the thermal population of C-17 target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures T-9
  •  
2.
  • Röder, M., et al. (author)
  • Coulomb dissociation of 20,21 N
  • 2016
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993 .- 0556-2813. ; 93:6
  • Journal article (peer-reviewed)abstract
    • Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is up to a factor of 5 higher at T
  •  
3.
  • Thies, Ronja, 1987, et al. (author)
  • Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes
  • 2016
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993 .- 0556-2813. ; 93:5
  • Journal article (peer-reviewed)abstract
    • Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from C10,12-18 and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1pxn) for relativistic C10,12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the epax code is not able to describe the data satisfactorily. Using abrabla07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease abrabla07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.
  •  
4.
  • Datta, U., et al. (author)
  • Direct experimental evidence for a multiparticle-hole ground state configuration of deformed Mg-33
  • 2016
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 94:3
  • Journal article (peer-reviewed)abstract
    • The first direct experimental evidence of a multiparticle-hole ground state configuration of the neutron-rich Mg-33 isotope has been obtained via intermediate energy (400 A MeV) Coulomb dissociation measurement. The major part similar to(70 +/- 13)% of the cross section is observed to populate the excited states of Mg-32 after the Coulomb breakup of Mg-33. The shapes of the differential Coulomb dissociation cross sections in coincidence with different core excited states favor that the valence neutron occupies both the s(1/2) and p(3/2) orbitals. These experimental findings suggest a significant reduction and merging of sd-pf shell gaps at N similar to 20 and 28. The ground state configuration of Mg-33 is predominantly a combination of Mg-32(3.0,3.5MeV; 2(-), 1(-)) circle times nu(s1/2), Mg-32(2.5MeV; 2(+)) circle times nu(p3/2), and Mg-32(0; 0(+)) circle times nu(p3/2). The experimentally obtained quantitative spectroscopic information for the valence neutron occupation of the s and p orbitals, coupled with different core states, is in agreement with Monte Carlo shell model (MCSM) calculation using 3 MeV as the shell gap at N = 20.
  •  
5.
  • Rahaman, A., et al. (author)
  • Coulomb breakup of neutron-rich Na-29,Na-30 isotopes near the island of inversion
  • 2017
  • In: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 44:4, s. 045101-
  • Journal article (peer-reviewed)abstract
    • First results are reported on the ground state configurations of the neutron-rich Na-29,Na-30 isotopes, obtained via Coulomb dissociation (CD) measurements. The invariant mass spectra of these nuclei have been obtained through measurement of the four-momenta of all decay products after Coulomb excitation of those nuclei on a Pb-208 target at energies of 400-430 MeV/nucleon using the FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated inclusive CD cross-sections (CD) of 89 (7) mb and 167 (13) mb for one neutron removal from Na-29 and Na-30, respectively, have been extracted up to an excitation energy of 10 MeV. The major part of one neutron removal, CD cross-sections of those nuclei populate the core, in its ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of Na-29 (3/2(+)) and Na-30 (2(+)) is the d-orbital with a small contribution from the s-orbital, which are coupled with the ground state of the core. One of the major components of the ground state configurations of these nuclei are Na-28(gs)(1(+)) circle times v(s,d) and Na-29(gs)(3/2(+)) circle times v(s,d), respectively. The ground state spin and parity of these nuclei obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the s and d orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with shell model calculation using the MCSM suggests a lower limit of around 4.3 MeV of the sd-pf shell gap in Na-30.
  •  
6.
  • Chakraborty, S., et al. (author)
  • Ground-state configuration of neutron-rich Al-35 via Coulomb breakup
  • 2017
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 96:3, s. 1965-
  • Journal article (peer-reviewed)abstract
    • The ground-state configuration of Al-35 has been studied via Coulomb dissociation (CD) using the LAND-FRS setup (GSI, Darmstadt) at a relativistic energy of similar to 403 MeV/nucleon. The measured inclusive differential CD cross section for Al-35, integrated up to 5.0 MeV relative energy between the Al-34 core and the neutron using a Pb target, is 78(13) mb. The exclusive measured CD cross section that populates various excited states of 34Al is 29(7) mb. The differential CD cross section of Al-35 -> Al-34 + n has been interpreted in the light of a direct breakup model, and it suggests that the possible ground-state spin and parity of Al-35 could be, tentatively, 1/2+ or 3/2(+) or 5/2(+). The valence neutrons, in the ground state of Al-35, may occupy a combination of either l = 3,0 or l = 1,2 orbitals coupled with the Al-34 core in the ground and isomeric state(s), respectively. This hints of a particle-hole configuration of the neutron across the magic shell gaps at N = 20,28 which suggests narrowing the magic shell gap. If the 5/2+ is the ground-state spin-parity of Al-35 as suggested in the literature, then the major ground-state configuration of Al-35 is a combination of Al-34(g. s.; 4(-)) circle times upsilon(p3/2) and Al-34(isomer; 1(+)) circle times upsilon(d3/2) states. The result from this experiment has been compared with that from a previous knockout measurement and a calculation using the SDPF-M interaction.
  •  
7.
  • Thandlam, Venugopal, et al. (author)
  • Evaluation of MODIS/CERES downwelling shortwave and longwave radiation over global tropical oceans
  • 2016
  • In: Remote Sensing of the Atmosphere, Clouds, and Precipitation VI. - : SPIE-Intl Soc Optical Eng.
  • Conference paper (peer-reviewed)abstract
    • In the present work, we have evaluated the satellite-estimated daily downwelling shortwave (QI) and longwave (QA) radiation from Moderate Resolution Imaging Spectrometer (MODIS) /Clouds and the Earth's Radiant Energy System (CM) with moored buoy observations of Global Tropical MooredBuoy Array (GTMBA) during 2001-2009. The global observed mean of QI and QA in GTMBA(CM) are 228 (233) W/m2 and 410 (405) W/m2 respectively. The mean QI shows a positive bias (~3-7 W/m2) whereas QA underestimates with a mean negative bias of ~3-6 W/m2 in the tropical Pacific, Atlantic and the Indian Ocean. CM underestimates the buoy observed variability in both QI and QA in all the tropical oceans. The correlation coefficient (CC) values in QI (Qa) are 0.79(0.88) 0.79(0.84) and0.81(0.94) over the Pacific, Atlantic and Indian ocean respectively. The Root Mean Square Error(RMSE) values in QI ranged between 35-43 W/m2 with lowest values in the Atlantic Ocean and highest in the Indian Ocean. The RMSE values in QA are less as compared to QI and it is ~9 W/m2in all the tropical ocean. The spatial distributions of QI and QA shows seasonality with lower and higher values coinciding with the Inter-Tropical Convergence Zone(ITCZ) locations in the QI and QA
  •  
8.
  • Rahaman, Hasibur, et al. (author)
  • Improved ocean analysis for the Indian Ocean
  • 2019
  • In: Journal of operational oceanography. Publisher. - : Taylor & Francis. - 1755-876X .- 1755-8778. ; 12:1, s. 16-33
  • Journal article (peer-reviewed)abstract
    • The National Centers for Environmental Prediction (NCEP) and the Indian National Centre for Ocean Information Services (INCOIS) produce global ocean analyses based on the Global Ocean Data Assimilation System (GODAS). This system uses a state of the art ocean general circulation model named moduler ocean model (MOM) and the 3D-Variational (3DVar) data assimilation technique. In this study we have evaluated the INCOIS-GODAS operational analysis products with an upgrade of the physical model from MOM4p0d to MOM4p1. Two experiments were performed with same atmospheric forcing fields:(i) using MOM4p0d (GODAS_p0), and (ii) using MOM4p1 (GODAS_p1). Observed temperature and salinity profiles were assimilated in both experiments. Validation with independent observations show improvement of sea surface temperature(SST), sea surface salinity (SSS) and surface currents in the new analysis GODAS_p1 as compared to the old analysis GODAS_p0.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view