SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ricci R.) srt2:(2005-2009)"

Sökning: WFRF:(Ricci R.) > (2005-2009)

  • Resultat 1-47 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • The ALICE experiment at the CERN LHC
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  • Stozhkov, Y. I., et al. (författare)
  • About Separation of Hadron and Electromagnetic Cascades in the Pamela Calorimeter
  • 2005
  • Ingår i: International Journal of Modern Physics A. - 0217-751X .- 1793-656X. ; 20:29, s. 6745-6748
  • Tidskriftsartikel (refereegranskat)abstract
    • Results of calibration of the PAMELA instrument at the CERN facilities are discussed. In September, 2003, the calibration of the Neutron Detector together with the Calorimeter was performed with the CERN beams of electrons and protons with energies of 20-180 GeV. The implementation of the Neutron Detector increases a rejection factor of hadrons from electrons about ten times. The results of calibration are in agreement with calculations.
  •  
3.
  • Casolino, M., et al. (författare)
  • Cosmic-ray observations of the heliosphere with the PAMELA experiment
  • 2006
  • Ingår i: Astrophysics. - : Elsevier BV. ; , s. 1848-1852
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment is a multi-purpose apparatus built around a permanent magnet spectrometer, with the main goal of studying in detail the antiparticle component of cosmic rays. The apparatus will be carried in space by means of a Russian satellite, due to launch in 2005, for a three year-long mission. The characteristics of the detectors composing the instrument, alongside the long lifetime of the mission and the orbital characteristics of the satellite, will allow to address several items of cosmic-ray physics. In this paper, we will focus on the solar and heliospheric observation capabilities of PAMELA.
  •  
4.
  • Adriani, O., et al. (författare)
  • Latest results from the Pamela experiment
  • 2009
  • Ingår i: Proceedings of Science. ; , s. 1-6
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we present the latest results of the Pamela satellite experiment, focusing in particular on the p̄/p and the e +/(e+ +e-) ratios.
  •  
5.
  • Adriani, O., et al. (författare)
  • Measurements of quasi-trapped electron and positron fluxes with PAMELA
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. A12218-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents precise measurements of the differential energy spectra of quasi-trapped secondary electrons and positrons and their ratio between 80 MeV and 10 GeV in the near-equatorial region (altitudes between 350 km and 600 km). Latitudinal dependences of the spectra are analyzed in detail. The results were obtained from July until November 2006 onboard the Resurs-DK satellite by the PAMELA spectrometer, a general purpose cosmic ray detector system built around a permanent magnet spectrometer and a silicon-tungsten calorimeter.
  •  
6.
  • Boezio, M., et al. (författare)
  • PAMELA and indirect dark matter searches
  • 2009
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 11, s. 105023-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a review of the experimental results obtained by PAMELA in measuring the (p, (p) over bar ) and e(+/-) abundance in cosmic rays. In this context, we discuss the interpretation of the observed anomalous positron excess in terms of the annihilation of dark matter particles as well as in terms of standard astrophysical sources. Moreover we show the constraints on dark matter models from (p) over bar data.
  •  
7.
  • Egry, I., et al. (författare)
  • Thermophysical properties of gamma-titanium aluminide : The European IMPRESS project
  • 2007
  • Ingår i: International journal of thermophysics. - : Springer Science and Business Media LLC. - 0195-928X .- 1572-9567. ; 28:3, s. 1026-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of its 6th Framework Programme, the European Union funds the Integrated Project IMPRESS, related to industrial applications of Ti-Al and Ni-Al alloys. One central task of this project is the precise determination of the relevant thermophysical properties of selected alloys for both the solid and liquid phases. The properties to be measured include thermal data such as heat of fusion, specific heat, and thermal conductivity, as well as thermophysical and transport properties such as density, surface tension, and viscosity. In addition to conventional high-temperature equipment, containerless methods are used. This article introduces the IMPRESS project, and discusses the first results obtained to date.
  •  
8.
  • Egry, I., et al. (författare)
  • Thermophysical properties of liquid Al-Ni alloys
  • 2009
  • Ingår i: High Temperatures-High Pressures. - 0018-1544 .- 1472-3441. ; 38:4, s. 343-351
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the Integrated Project IMPRESS, funded by the EU, thermophysi cal properties of two Al-Ni alloys have been investigated: Raney-nickel (Al-31.5at%Ni) and Al-25at%Ni, corresponding to the intermetallic phase Al3Ni. Transition temperatures, latent heat, heat capacity, density and electrical resistivity were measured in the solid and liquid phases. In addition, surface tension and viscosity of the melts were also determined. All quantities have been obtained as a function of temperature, in some cases also in the undercooled liquid. In this paper, we report on results obtained for the liquid phase using advanced container-based and containerless measurement methods. The obtained data yield a comprehensive characterisation of this technologically relevant class of alloys.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Mocchiutti, E., et al. (författare)
  • Precision studies of cosmic rays with the PAMELA satellite experiment
  • 2009
  • Ingår i: 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5. - : IEEE. - 9781424439621 ; , s. 2125-2130
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15th 2006. The combination of a permanent magnet silicon strip spectrometer, and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - 200 GeV). A primary scientific goal is to search for dark matter particle annihilations by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment will be reviewed with a particular focus on cosmic ray antiprotons and positrons. The status of PAMELA measurements for other cosmic ray species will also be reviewed.
  •  
13.
  • Mocchiutti, E., et al. (författare)
  • The PAMELA space experiment
  • 2009
  • Ingår i: Proceedings of the 44th Rencontres de Moriond - 2009 Electroweak Interactions and Unified Theories, EW 2009. - : Gioi Publishers. ; , s. 317-324
  • Konferensbidrag (refereegranskat)abstract
    • The 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - 100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectrum in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (anti-helium) and testing cosmic-ray propagation models through precise measurements of the anti-particle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA is investigating phenomena connected with solar and earth physics.
  •  
14.
  • Papini, P., et al. (författare)
  • Latest results from PAMELA
  • 2009
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment is a satellite-borne apparatus designed to study charged particles in the cosmic radiation, with a particular focus on antiparticles. The detector is housed on the Resurs-DK1 satellite and it is taking data since June 2006. The main parts of the apparatus are a magnetic spectrometer, which is equipped with a silicon-microstrip tracking system and which is used to measure the rigidity and the charge of particles, and a silicon/tungsten electromagnetic calorimeter which provides particle identification. The main results about the antiparticles component of cosmic rays obtained during the first 500 days of data taking are summarized here.
  •  
15.
  • Ricci, E., et al. (författare)
  • Thermophysical properties of Cu-based industrial alloys in the liquid phase
  • 2009
  • Ingår i: High Temperatures-High Pressures. - 0018-1544 .- 1472-3441. ; 38:1, s. 43-61
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermophysical properties of Cu-based industrial alloys in the liquid phase have been determined in the framework of ThermoLab project. Four commercial copper alloys provided by one member of the industrial user group, Cu-Sn-X (X=P; Ti), Cu-Ni-Si and Cu-Ni-Si-Mg have been investigated by different European laboratories. The results of the ground-based experimental programme concerning classical high-temperature calorimetry, thermal diffusivity, density, surface tension and viscosity measurements were critically compared in order to improve the reliability of data and to identify, when possible, recommended values.
  •  
16.
  • Adriani, O., et al. (författare)
  • An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 458:7238, s. 607-609
  • Tidskriftsartikel (refereegranskat)abstract
    • Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium(1), which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars(2) and microquasars(3) or through dark matter annihilation(4), which would be 'primary sources'. Previous statistically limited measurements(5-7) of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply overmuch of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
  •  
17.
  • Adriani, O., et al. (författare)
  • Positrons and electrons in primary cosmic rays as measured in the PAMELA experiment
  • 2009
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:5, s. 568-570
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA experiment is being carried out on board the Russian satellite Resurs DK1 placed in the near-earth near-polar orbit on June 15, 2006. The apparatus comprising a silicon-strip magnetic spectrometer and an electromagnetic calorimeter allows measurement of electron and positron fluxes in cosmic rays in a wide energy interval from ∼100 MeV to hundreds of GeV. The high-energy electron and positron separation technique is discussed and the data on positron-to-electron ratio in primary cosmic rays up to E ≃ 10 GeV from the 2006 - 2007 measurements are reported in this work.
  •  
18.
  • Adriani, O., et al. (författare)
  • Secondary electron and positron fluxes in the near-Earth space observed in the ARINA and PAMELA experiments
  • 2009
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:3, s. 364-366
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary electron and positron fluxes in the energy range from 3 MeV to 7 GeV were measured with the ARINA and PAMELA spectrometers onboard the Resurs-DK satellite launched on June 15, 2006 into an elliptical orbit with an inclination of 70.4° and an altitude of 350-600 km. It is shown that positrons dominate over electrons by a factor of up to 4-5 in the geomagnetic equator region (L < 1.2 and B > 0.25).
  •  
19.
  • Adriani, O., et al. (författare)
  • The PAMELA space mission
  • 2008
  • Ingår i: Astroparticle, Part. Space Phys., Detect. Med. Phys. Appl. - Proc. Conf.. - : WORLD SCIENTIFIC. - 9812819088 - 9789812819086 ; , s. 858-864
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) experiment, is a satellite-borne particle spectrometer. It was launched on 15th June 2006 from the Baikonur cosmodrome in Kazakhstan, is installed into the Russian Resurs-DK1 satellite. PAMELA is composed of a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. Among the PAMELA major objectives are the study of charged particles in the cosmic radiation, the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved. PAMELA has been in a nearly continuous data taking mode since llth July 2006. The status of the apparatus and performances will be presented.
  •  
20.
  • Adriani, O., et al. (författare)
  • The PAMELA space mission
  • 2009
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) space mission has been launched on-board the Resurs-DK1 satellite on June 15(th) 2006 from the Baikonur cosmodrome, in Kazakhstan. PAMELA is a particle spectrometer designed to study charged particles in the cosmic radiation with special focus on the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved.
  •  
21.
  •  
22.
  • Boezio, M., et al. (författare)
  • The first year in orbit of the pamela experiment
  • 2007
  • Ingår i: Proceedings of the 30th International Cosmic Ray Conference, ICRC 2007. - : Universidad Nacional Autonoma de Mexico. ; , s. 99-102
  • Konferensbidrag (refereegranskat)abstract
    • On the 15th of June 2006, the PAMELA experiment mounted on the Resurs DK1 satellite, was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. PAMELA is a satellite-borne apparatus designed to study charged particles in the cosmic radiation, to investigate the nature of dark matter, measuring the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved, and to search for antinuclei with unprecedented sensitivity. The PAMELA apparatus comprises a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. We will present the status of the apparatus after one year in orbit. Furthermore, we will discuss the PAMELA in-flight performances.
  •  
23.
  • Boezio, M., et al. (författare)
  • The PAMELA space experiment : First year of operation
  • 2008
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 110:6
  • Tidskriftsartikel (refereegranskat)abstract
    • On the 15th of June 2006 the PAMELA experiment, mounted on the Resurs DK1 satellite, was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. PAMELA is a satellite-borne apparatus designed to study charged particles in the cosmic radiation, to investigate the nature of dark matter, measuring the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved, and to search for antinuclei with unprecedented sensitivity. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle identification over a wide energy range. © 2008 IOP Publishing Ltd.
  •  
24.
  • Bonvicini, V., et al. (författare)
  • Performance of the PAMELA Si-W imaging calorimeter in space
  • 2009
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 160, s. 012039-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Payload for Antimatter-Matter Exploration and Light Nuclei Astrophysics (PAMELA), primarily designed to directly measure antiparticles (antiprotons and positrons) in the cosmic radiation, was launched successfully on June 15th, 2006, and, since then, it is in continuous data taking. The calorimeter of the PAMELA apparatus has been designed to identify antiprotons from an electron background and positrons from a background of protons with high efficiency and rejection power. It is a sampling silicon-tungsten imaging calorimeter, which comprises 44 single-sided silicon sensor planes (380 μm thick) interleaved with 22 plates of tungsten absorber (0.74 X0 each). It is the first silicon-tungsten calorimeter to be launched in space. In this work we present the in-orbit performance of the calorimeter, including the measured identification capabilities. The calorimeter provides a proton rejection factor of ∼105 while keeping a high efficiency in selecting electrons and positrons, thus fulfilling the identification power needed to reach the primary scientific objectives of PAMELA. We show also that, after almost two years of operation in space, the calorimeter is still performing nominally.
  •  
25.
  • Brooks, R., et al. (författare)
  • Thermophysical property measurements of high-temperature liquid metallic alloys - State of the art
  • 2006
  • Ingår i: High Temperature Materials and Processes. - 0334-6455 .- 2191-0324. ; 25:06-maj, s. 303-322
  • Tidskriftsartikel (refereegranskat)abstract
    • In this report, a survey is presented about state-of-the-art thermophysical property measurements of liquid metallic: alloys at high temperatures. Methods for measuring both caloric quantities, like specific heat and thermal conductivity, and thermophysical properties, like density, surface tension and viscosity, are described in detail. Measurement techniques discussed include container-based as well as containerless techniques. Strengths and potential pitfalls in applying these methods are pointed out and recommendations for best-practice are given.
  •  
26.
  • Casolino, M., et al. (författare)
  • Cosmic ray measurements with Pamela experiment
  • 2009
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature hi a wide energy range (protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antinuclei with a precision of the order of 10(-8)). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15(th) 2006 in a 350 X 600 km orbit with an inclination of 70 degrees. In this work we describe the scientific objectives awl the performance of PAMELA in its first two years of operation. Data oil protons of trapped, secondary and galactic nature - as well as measurements of the December 13(th) 2006 Solar Particle Event - are also provided.
  •  
27.
  • Casolino, M., et al. (författare)
  • Two years of flight of the Pamela experiment : Results and perspectives
  • 2009
  • Ingår i: Journal of the Physical Society of Japan. - 0031-9015 .- 1347-4073. ; 78:Suppl. A, s. 35-40
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antinuclei with a precision of the order of 10~8). The experiment, housed on board the Russian Resurs-DKl satellite, was launched on June, 15th 2006 in a 350 x 600 km orbit with an inclination of 70 degrees. In this work we describe the scientific objectives and the performance of PAMELA in its first two years of operation. Data on protons of trapped, secondary and galactic nature - as well as measurements of the December 13th 2006 Solar Particle Event - are also provided.
  •  
28.
  • De Simone, N., et al. (författare)
  • Comparison of models and measurements of protons of trapped and secondary origin with PAMELA experiment
  • 2009
  • Ingår i: 31st International Cosmic Ray Conference, ICRC 2009. - : University of Lodz.
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: Antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antinuclei with a precision of the order of 10-8). The experiment, housed on board the Russian Resurs- DK1 satellite, was launched on June, 15th 2006 in a 350x600 km orbit with an inclination of 70 degrees. In this work we present the measurement of galactic and reentrant albedo proton spectra in the energy range between 100 MeV and 300 GeV. The galactic protons refer to the period 2006-2008, showing evidence of Solar modulation effects even during the solar minimum.
  •  
29.
  • Galper, A. M., et al. (författare)
  • International Russian-Italian mission "Rim-Pamela
  • 2009
  • Ingår i: Proceedings of the 13th Lomonosov Conference on Elementary Particle Physics. - : WORLD SCIENTIFIC. - 9812837582 - 9789812837585 ; , s. 199-206
  • Konferensbidrag (refereegranskat)abstract
    • The successful launch of spacecraft "RESURS DK" 1 with precision magnetic spectrometer "PAMELA" onboard was executed at Baikonur cosmodrome 15 June 2006. The primary phase of realization of International Russian-Italian Project "RIM-PAMELA" with German and Swedish scientists' participation has begun since the launch of instrument "PAMELA" that has mainly been directed to investigate the fluxes of galactic cosmic rays. This report contains the main scientific Project's tasks and the conditions of science program's implementation after one year since exploration has commenced.
  •  
30.
  • Grishantseva, L. A., et al. (författare)
  • Sub-cutoff electrons and positrons in the near Earth space
  • 2009
  • Ingår i: 31st International Cosmic Ray Conference, ICRC 2009. - : University of Lodz.
  • Konferensbidrag (refereegranskat)abstract
    • Precise spectra of electron and positron fluxes in energy range from 80 MeV to several GeV below the geomagnetic cutoff rigidity were obtained using data of the PAMELA spectrometer. It was launched on June 15th 2006 onboard the Resurs-DK satellite on an elliptical orbit (the inclination is 70°, the altitude is 350-610 km). The work presents measurements of secondary lepton fluxes produced in interactions of cosmic ray protons with the atmosphere in the near Earth space (out of the South Atlantic Anomaly). Latitudinal dependences are discussed. These results are particularly interesting for more accurate definition of electron/positron flux model in the Earth magnetosphere.
  •  
31.
  • Mori, N., et al. (författare)
  • Measurement of the He nuclei flux at high energies with the PAMELA experiment
  • 2009
  • Ingår i: 31st International Cosmic Ray Conference, ICRC 2009. - : University of Lodz.
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment is a satellitebased apparatus launched in June 2006. Its core instrument is a magnetic spectrometer, whose high spatial resolution (∼ 3 micron) provides the discriminative power to separate particles and antiparticles. It can measure the momentum and the energy-loss rate of an incident particles, thus allowing to identify higher charges (up to Z ≃ 5). The main goal for PAMELA is a precise measurement of the light antimatter component in cosmic rays (antiprotons, positrons), with unprecedented statistics and over a largely unexplored energy range. The instrument characteristics and the large statistics allow to precisely measure absolute fluxes for various cosmic-ray species up to high energy. Here the He flux analysis above some GeV is presented.
  •  
32.
  • Pearce, Mark, et al. (författare)
  • PAMELA : a payload for antimatter matter exploration and light-nuclei astrophysics - status and first results
  • 2007
  • Ingår i: 2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11. - 9781424409228 ; , s. 42-47
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA is a satellite-borne experiment designed for precision studies of the charged cosmic radiation. The primary scientific goal is the study of the antimatter component of the cosmic radiation (antiprotons, 80 MeV - 190 GeV; and positrons, 50 MeV - 270 GeV) in order to search for evidence of dark matter particle annihilations. PAMELA will also search for primordial antinuclei (in particular, anti-helium), and test cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and studies of light nuclei and their isotopes. Concomitant goals include a study of solar physics and solar modulation during the 24th solar minimum by investigating low energy particles in the cosmic radiation; and a reconstruction of the cosmic ray electron energy spectrum up to several TeV thereby allowing a possible contribution from local sources to be studied. PAMELA is housed on-board the Russian Resurs-DK1 satellite, which was launched on June 15th 2006 in an elliptical (350-600 km altitude) orbit with an inclination of 70 degrees. PAMELA consists of a permanent magnet spectrometer, to provide rigidity and charge sign information; a Time-of-Flight and trigger system, for velocity and charge determination; a silicon-tungsten calorimeter, for lepton/hadron discrimination; and a neutron detector. An anticoincidence system is used offline to reject false triggers. In this article the PAMELA experiment and its status are reviewed. A preliminary discussion of data recorded in-orbit is also presented.
  •  
33.
  • Picozza, P., et al. (författare)
  • Dark Matter Research and the PAMELA Space Mission
  • 2009
  • Ingår i: SOURCES AND DETECTION OF DARK MATTER AND DARK ENERGY IN THE UNIVERSE. - : AIP. ; , s. 141-150
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Bajkonur cosmodrome and since July 2006 it has been collected data. The core of the apparatus is a silicon-microstrip magnetic spectrometer combined with a time-of-flight system, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The overall devices allow precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - 100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectra in order to search for exotic sources, such as dark matter particle annihilation. PAMELA is also searching for primordial antinuclei ((He) over bar). Concomitant, but not secondary, goals are the measurements of light nuclei and their isotopes for studying the energy dependence of cosmic ray lifetimes in the Galaxy, the monitoring of the solar activity and the study of the radiation belts.
  •  
34.
  • Ricci, E., et al. (författare)
  • Density, surface tension, and viscosity of CMSX-((R)) superalloy
  • 2007
  • Ingår i: International journal of thermophysics. - : Springer Science and Business Media LLC. - 0195-928X .- 1572-9567. ; 28:4, s. 1304-1321
  • Tidskriftsartikel (refereegranskat)abstract
    • The surface tension, density, and viscosity of the Ni-based superalloy CMSX-4((R)) have been determined in the temperature ranges of 1,650-1,850 K, 1,650-1,950 K, and 1,623-1,800 K, respectively. Each property has been measured in parallel by different techniques at different participating laboratories, and the results are compared with the aim to improve the reliability of data and to identify recommended values. The following relationships have been proposed: density-rho (T) [kg.m(-3)] = 7,876 - 1.23(T - 1,654 K); surface tension-gamma (T) [mN.m(-1)] = 1,773 - 0.56 (T - 1, 654 K); viscosity-eta (T) [mPa.s] = 8.36 - 1.82 x 10(-2)(T - 1,654 K). For a comparison, surface-tension measurements on the Al-88.6 at% Ni liquid alloy with the same Al-content as the CMSX-4((R)) alloy were also performed. In addition, the surface tension and density have been theoretically evaluated by different models, and subsequently compared with new experimental data as well as with those reported in the literature. The surface-tension experimental data for the liquid CMSX-4((R)) alloy were found to be close to that of the A1-88.6 at% Ni alloy which is consistent with results from the compound formation model (CFM).
  •  
35.
  • Sparvoli, R., et al. (författare)
  • Cosmic rays studies with the PAMELA space experiment
  • 2009
  • Ingår i: Nuovo cimento della societa italiana de fisica. C, Geophysics and space physics. - 1124-1896 .- 1826-9885. ; 32:5-6, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The instrument PAMELA, in orbit since June 15th, 2006 on board the Russian satellite Resurs DK1, is delivering to ground 16 Gigabytes of data per day. The apparatus is designed to study charged particles in the cosmic radiation, with a particular focus on antiparticles as a possible signature of dark matter annihilation in the galactic halo; the combination of a magnetic spectrometer and different detectors-indeed- allows antiparticles to be reliably identified from a large background of other charged particles. New results on the antiproton-to-proton and positron-to-all-electron ratios over a wide energy range (1-100GeV) have been recently released by the PAMELA Collaboration, and will be summarized in this paper. While the antiproton-to-proton ratio does not show particular differences from an antiparticle standard secondary production, in the positron-to-all-electron ratio an enhancement is clearly seen at energies above 10 GeV. Possible interpretations of this effect will be briefly discussed.
  •  
36.
  • Avdeev, S. V., et al. (författare)
  • Preliminary results of studying the effect of heavy charged particles on the human central nervous system in experiments SilEye and Alteino
  • 2005
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 69:3, s. 512-514
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of experiments were carried out in the period 1995 to 2002 to study the phenomenon of light flashes (LFs) which arose in the eyes of astronauts. These experiments were made onboard the Mir orbital station (SilEye, SilEye-2) and on the Russian segment of the International Space Station (SilEye-3/Alteino). As a result of investigation it is reliably demonstrated that the majority of light flashes under conditions of a space flight are caused by nuclei of cosmic rays. Electric signals from brain, recorded during LF occurrence, were an important final result of these studies.
  •  
37.
  • Brignole, M, et al. (författare)
  • Indications for the use of diagnostic implantable and external ECG loop recorders
  • 2009
  • Ingår i: Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. - : Oxford University Press (OUP). - 1532-2092. ; 11:5, s. 671-687
  • Tidskriftsartikel (refereegranskat)
  •  
38.
  • Casolino, M., et al. (författare)
  • Launch of the space experiment PAMELA
  • 2008
  • Ingår i: Advances in Space Research. - : Elsevier. - 0273-1177 .- 1879-1948. ; 42:3, s. 455-466
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10-8. The experiment, housed on board the Russian Resurs-DK I satellite, was launched on June 15th, 2006 in a 350 x 600 km orbit with all inclination of 70'. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, time-of-flight, and rigidity information. Lepton/hadron identification is performed by a silicon-tungsten calorimeter and a neutron detector placed at the bottom of the device. An anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the calorimeter, the neutron detector, and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives, and the performance in the first months after launch.
  •  
39.
  • Casolino, M., et al. (författare)
  • Magnetospheric and solar physics observations with the PAMELA experiment
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 588:1-2, s. 243-246
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite-borne experiment designed to make long duration measurements of the cosmic radiation in Low Earth Orbit. It is devoted to the detection of the cosmic-ray spectra in the 100 MeV-300 GeV range with primary scientific goal the measurement of antiproton and positron spectra over the largest energy range ever achieved. Other tasks include the search for antinuclei with unprecedented sensitivity and the measurement of the light nuclear component of cosmic rays. In addition, PAMELA can investigate phenomena connected with solar and Earth physics. The apparatus consists of: a Time of Flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work we present some measurements of galactic, secondary and trapped particles performed in the first months of operation.
  •  
40.
  • Casolino, M., et al. (författare)
  • Relative nuclear abundances inside ISS with Sileye-3/Alteino experiment
  • 2006
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 37:9, s. 1685-1690
  • Tidskriftsartikel (refereegranskat)abstract
    • The experiment Sileye-3/Alteino was first operational on board the international Space Station between 27/4 and 1/5/2002. It is constituted of a cosmic ray silicon detector and an electroencephalograph and is used to monitor radiation environment and study the light flash phenomenon in space. As a stand-alone device, Sileye-3/Alteino can monitor in real time cosmic ray nuclei. In this work, we report on relative nuclear abundance measurements in different regions of the orbit for nuclei from B to Fe in the energy range above similar or equal to 60 Mev/n. Abundances of nuclei such as 0 and Ne relative to C are found to be increased in respect to particle composition outside of the station, whereas the Fe group is reduced. This effect could be ascribed to nuclear interactions with the hull of the station.
  •  
41.
  • Fecht, H. -J, et al. (författare)
  • Thermophysical properties of materials
  • 2008
  • Ingår i: Europhysics News. - : EDP Sciences. - 0531-7479 .- 1432-1092. ; 39:5, s. 19-21
  • Tidskriftsartikel (refereegranskat)
  •  
42.
  • Palmieri, R., et al. (författare)
  • Petrology of the eclogites from western Tasmania : Insights into the Cambro-Ordovician evolution of the paleo-Pacific margin of Gondwana
  • 2009
  • Ingår i: Lithos. - : Elsevier BV. - 0024-4937 .- 1872-6143. ; 109:3-4, s. 223-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Eclogite facies rocks along the Paleozoic active margin of Gondwana are rare. They are limited to isolated segments of Northern Victoria Land (Antarctica), western Tasmania, and southeastern Australia. New petrological data for mafic rocks and their host garnet-kyanite schists from the Franklin Metamorphic Complex (western Tasmania) permit reconstruction of six main stages of mineral growth for the eclogite. Stages I and II occurred at greenschist/ amphibolite-facies conditions (ca. 500–600 °C; 0.55–0.7 GPa for stage II) before attaining high-pressure conditions (at≈600–650 °C; N1.5GPa for stage III). The following stages, IV and V, record the decompression from high-pressure conditions to amphibolite-facies (ca. 500–600 °C; 0.4–1.0 GPa). Finally, stage VI represents the late greenschist-facies retrogression. However, the pelitic schist surrounding the eclogite records only the medium pressure amphibolite- facies stage. The P–T evolution over time outlines a clockwise path that is quite steep in both the prograde and retrograde segments. The latter shows a nearly isothermal decompression between the eclogite and the high-pressure amphibolite-facies stage IV, which was achieved at deep crustal levels (≈30 km), and a final decrease in both pressure and temperature from deep/intermediate to shallow crustal levels, with a typical cooling-unloading path. The lack of a complete re-equilibration during the different stages and the high dP/dT for both the prograde and retrograde paths are indicative of a rapid burial and initially rapid exhumation. The similarity of the mafic whole-rock chemical composition, including N, T to E-MORB and of the peak metamorphic age (≈500Ma) between the Tasmanian eclogites and the UHP rocks from Northern Victoria Land, supports the idea that they formed in the context of the same contractional event. However, the different P–T conditions and dP/dT point to different tectono-metamorphic settings for the two sectors of the paleo-Pacific margin of Gondwana during the Ross/Tyennan orogeny.
  •  
43.
  • Papini, P., et al. (författare)
  • In-flight performances of the PAMELA satellite experiment
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 588:1-2, s. 259-266
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satcllite-borne experiment designed to study with great accuracy charged particles in the cosmic radiation with a particular focus on antiparticles. The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June 15, 2006 in a 350 x 600 km orbit with an inclination of 70 degrees. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle identification over a wide energy range. In this work, the detector design is reviewed and the in-orbit performances in the first months after the launch are presented.
  •  
44.
  • Sandercock, P, et al. (författare)
  • EPITHET--where next?
  • 2008
  • Ingår i: The Lancet. Neurology. - 1474-4422. ; 7:7, s. 570-571
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
45.
  •  
46.
  •  
47.
  • Wirth, KG, et al. (författare)
  • Separase: a universal trigger for sister chromatid disjunction but not chromosome cycle progression
  • 2006
  • Ingår i: The Journal of cell biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 172:6, s. 847-860
  • Tidskriftsartikel (refereegranskat)abstract
    • Separase is a protease whose liberation from its inhibitory chaperone Securin triggers sister chromatid disjunction at anaphase onset in yeast by cleaving cohesin's kleisin subunit. We have created conditional knockout alleles of the mouse Separase and Securin genes. Deletion of both copies of Separase but not Securin causes embryonic lethality. Loss of Securin reduces Separase activity because deletion of just one copy of the Separase gene is lethal to embryos lacking Securin. In embryonic fibroblasts, Separase depletion blocks sister chromatid separation but does not prevent other aspects of mitosis, cytokinesis, or chromosome replication. Thus, fibroblasts lacking Separase become highly polyploid. Hepatocytes stimulated to proliferate in vivo by hepatectomy also become unusually large and polyploid in the absence of Separase but are able to regenerate functional livers. Separase depletion in bone marrow causes aplasia and the presumed death of hematopoietic cells other than erythrocytes. Destruction of sister chromatid cohesion by Separase may be a universal feature of mitosis in eukaryotic cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-47 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy