SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rinne Janne) srt2:(2020-2024)"

Search: WFRF:(Rinne Janne) > (2020-2024)

  • Result 1-21 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Junninen, Heikki, et al. (author)
  • Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests
  • 2022
  • In: Communications Earth and Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Aerosols and their interaction with clouds constitute the largest uncertainty in estimating the radiative forcing affecting the climate system. Secondary aerosol formation is responsible for a large fraction of the cloud condensation nuclei in the global atmosphere. Wetlands are important to the budgets of methane and carbon dioxide, but the potential role of wetlands in aerosol formation has not been investigated. Here we use direct atmospheric sampling at the Siikaneva wetland in Finland to investigate the emission of methane and volatile organic compounds, and subsequently formed atmospheric clusters and aerosols. We find that terpenes initiate stronger atmospheric new particle formation than is typically observed over boreal forests and that, in addition to large emissions of methane which cause a warming effect, wetlands also have a cooling effect through emissions of these terpenes. We suggest that new wetlands produced by melting permafrost need to be taken into consideration as sources of secondary aerosol particles when estimating the role of increasing wetland extent in future climate change.
  •  
2.
  • Wachiye, Sheila, et al. (author)
  • Effects of livestock and wildlife grazing intensity on soil carbon dioxide flux in the savanna grassland of Kenya
  • 2022
  • In: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809. ; 325
  • Journal article (peer-reviewed)abstract
    • Although grazing is the primary land use in the savanna lowland of southern Kenya, the effects of grazing on soil carbon dioxide flux (RS) remain unclear. A 12-month study was conducted from January to December 2020 on the effects of six grazing intensities sites (overgrazed (OG), heavily grazed (HG), moderately grazed (MG), moderately to lightly grazed (M-LG), lightly grazed (LG) and no grazing (NG)) on RS on. A camera trap was used to monitor the total number of animals at each site, indicating the grazing intensity. Weekly measurements of RS were taken using static greenhouse gas chambers along with simultaneous measurements of soil temperature (TS) and volumetric soil water content (WS) (depth of 5 cm). Mean RS at HG, MG, M-LG and LG sites was approximately 15–25% higher than at NG and OG sites (p < 0.001). Mean WS increased with decrease in grazing especially in the dry season, while TS increased with increase in grazing. We observed bimodal temporal variation in RS and WS due to two wet seasons in the year. Thus, variation in RS across the study period followed the changes in WS rather than those in TS. Mean values of RS in the wet seasons were significantly higher (> 45%) than those in the dry seasons, and WS accounted for 71% of the temporal variability in RS (p < 0.05). In addition, the enhanced vegetation index (EVI, interpreted as a proxy for vegetation cover) explained 60% of the variance of RS, and WS and EVI together explained 75%. EVI showed a negative relationship (p < 0.05) with animal intensity, indicating that more grazing reduced vegetation cover and, consequently, soil organic carbon and biomass. Soil bulk density was lower at less grazed sites. While RS variability was unaffected by total nitrogen content, pH, and texture, correspondence analysis demonstrated that the main factors influencing RS dynamics across the year under different grazing intensities were WS and vegetation cover. Our results contribute to closing the existing knowledge gap regarding the effects of grazing intensity on RS in East Africa savannas. Therefore, this information is of great importance in understanding carbon cycling in savanna grassland, as well as the identification of the potential consequences of increasing land pressure caused by rising livestock numbers, and will assist in the development of climate-smart livestock management in East Africa.
  •  
3.
  • Wachiye, Sheila, et al. (author)
  • Soil greenhouse gas emissions from a sisal chronosequence in Kenya
  • 2021
  • In: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 307
  • Journal article (peer-reviewed)abstract
    • Sisal (Agave sisalana) is a climate-resilient crop grown on large-scale farms in semi-arid areas. However, no studies have investigated soil greenhouse gas (GHGs: CO2, N2O and CH4) fluxes from these plantations and how they relate to other land cover types. We examined GHG fluxes (Fs) in a sisal chronosequence at Teita Sisal Estatein southern Kenya. The effects of stand age on Fs were examined using static GHG chambers and gas chromatography for a period of one year in seven stands: young stands aged 1–3 years, mature stands aged 7–8 years, and old stands aged 13–14 years. Adjacent bushland served as a control site representing the surrounding land use type. Mean CO₂ fluxes were highest in the oldest stand (56 ± 3 mg C m-2 h-1) and lowest in the 8-year old stand (38 ± 3 mg C m-2 h-1), which we attribute to difference in root respiration between the stand. All stands had 13–28% higher CO₂ fluxes than bushland (32 ± 3 mg C m-2 h-1). CO2 fluxes in the wet season were about 70% higher than dry season across all sites. They were influenced by soil water content (WS) and vegetation phenology. Mean N2O fluxes were very low (<5 μg N m-2 h-1) in all sites due to low soil nitrogen (N) content. About 89% of CH4 fluxes were below the detection limit (LOD ± 0.02 mg C m-2 h-1). Our results imply that sisalplantations have higher soil CO2 emissions than the surrounding land use type, and the seasonal emissions were largely driven by WS and the vegetation status. Methane and nitrous oxide are of minor importance. Thus, soil GHG fluxes from sisal plantations are a minor contributor to agricultural GHG emissions in Kenya.
  •  
4.
  • Cai, Zhanzhang, et al. (author)
  • Modelling Daily Gross Primary Productivity with Sentinel-2 Data in the Nordic Region-Comparison with Data from MODIS
  • 2021
  • In: Remote Sensing. - : MDPI. - 2072-4292. ; 13:3
  • Journal article (peer-reviewed)abstract
    • The high-resolution Sentinel-2 data potentially enable the estimation of gross primary productivity (GPP) at finer spatial resolution by better capturing the spatial variation in a heterogeneous landscapes. This study investigates the potential of 10 m resolution reflectance from the Sentinel-2 Multispectral Instrument to improve the accuracy of GPP estimation across Nordic vegetation types, compared with the 250 m and 500 m resolution reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We applied linear regression models with inputs of two-band enhanced vegetation index (EVI2) derived from Sentinel-2 and MODIS reflectance, respectively, together with various environmental drivers to estimate daily GPP at eight Nordic eddy covariance (EC) flux tower sites. Compared with the GPP from EC measurements, the accuracies of modelled GPP were generally high (R-2 = 0.84 for Sentinel-2; R-2 = 0.83 for MODIS), and the differences between Sentinel-2 and MODIS were minimal. This demonstrates the general consistency in GPP estimates based on the two satellite sensor systems at the Nordic regional scale. On the other hand, the model accuracy did not improve by using the higher spatial-resolution Sentinel-2 data. More analyses of different model formulations, more tests of remotely sensed indices and biophysical parameters, and analyses across a wider range of geographical locations and times will be required to achieve improved GPP estimations from Sentinel-2 satellite data.
  •  
5.
  • Chang, Kuang Yu, et al. (author)
  • Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 2266-2266
  • Journal article (peer-reviewed)abstract
    • Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
  •  
6.
  • Heiskanen, Jouni, et al. (author)
  • The Integrated Carbon Observation System in Europe
  • 2022
  • In: Bulletin of the American Meteorological Society. - 0003-0007. ; 103:3, s. 855-872
  • Journal article (peer-reviewed)abstract
    • Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers' decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
  •  
7.
  • Junttila, Sofia, et al. (author)
  • Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data
  • 2021
  • In: Remote Sensing. - : MDPI AG. - 2072-4292. ; 13:4
  • Journal article (peer-reviewed)abstract
    • Peatlands play an important role in the global carbon cycle as they contain a large soil carbon stock. However, current climate change could potentially shift peatlands from being carbon sinks to carbon sources. Remote sensing methods provide an opportunity to monitor carbon dioxide (CO2) exchange in peatland ecosystems at large scales under these changing conditions. In this study, we developed empirical models of the CO2 balance (net ecosystem exchange, NEE), gross primary production (GPP), and ecosystem respiration (ER) that could be used for upscaling CO2 fluxes with remotely sensed data. Two to three years of eddy covariance (EC) data from five peatlands in Sweden and Finland were compared to modelled NEE, GPP and ER based on vegetation indices from 10 m resolution Sentinel-2 MSI and land surface temperature from 1 km resolution MODIS data. To ensure a precise match between the EC data and the Sentinel-2 observations, a footprint model was applied to derive footprint-weighted daily means of the vegetation indices. Average model parameters for all sites were acquired with a leave-one-out-cross-validation procedure. Both the GPP and the ER models gave high agreement with the EC-derived fluxes (R-2 = 0.70 and 0.56, NRMSE = 14% and 15%, respectively). The performance of the NEE model was weaker (average R-2 = 0.36 and NRMSE = 13%). Our findings demonstrate that using optical and thermal satellite sensor data is a feasible method for upscaling the GPP and ER of northern boreal peatlands, although further studies are needed to investigate the sources of the unexplained spatial and temporal variation of the CO2 fluxes.
  •  
8.
  • Kallingal, Jalisha T., et al. (author)
  • Optimising CH4 simulations from the LPJ-GUESS model v4.1 using an adaptive Markov chain Monte Carlo algorithm
  • 2024
  • In: Geoscientific Model Development. - 1991-959X. ; 17:6, s. 2299-2324
  • Journal article (peer-reviewed)abstract
    • The processes responsible for methane (CH4) emissions from boreal wetlands are complex; hence, their model representation is complicated by a large number of parameters and parameter uncertainties. The arctic-enabled dynamic global vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) is one such model that allows quantification and understanding of the natural wetland CH4 fluxes at various scales, ranging from local to regional and global, but with several uncertainties. The model contains detailed descriptions of the CH4 production, oxidation, and transport controlled by several process parameters. Complexities in the underlying environmental processes, warming-driven alternative paths of meteorological phenomena, and changes in hydrological and vegetation conditions highlight the need for a calibrated and optimised version of LPJ-GUESS. In this study, we formulated the parameter calibration as a Bayesian problem, using knowledge of reasonable parameters values as priors. We then used an adaptive Metropolis-Hastings (MH)-based Markov chain Monte Carlo (MCMC) algorithm to improve predictions of CH4 emission by LPJ-GUESS and to quantify uncertainties. Application of this method on uncertain parameters allows for a greater search of their posterior distribution, leading to a more complete characterisation of the posterior distribution with a reduced risk of the sample impoverishment that can occur when using other optimisation methods. For assimilation, the analysis used flux measurement data gathered during the period from 2005 to 2014 from the Siikaneva wetlands in Southern Finland with an estimation of measurement uncertainties. The data are used to constrain the processes behind the CH4 dynamics, and the posterior covariance structures are used to explain how the parameters and the processes are related. To further support the conclusions, the CH4 flux and the other component fluxes associated with the flux are examined. The results demonstrate the robustness of MCMC methods to quantitatively assess the interrelationship between objective function choices, parameter identifiability, and data support. The experiment using real observations from Siikaneva resulted in a reduction in the root-mean-square error (RMSE), from 0.044 to 0.023 gC m-2 d-1, and a 93.89 % reduction in the cost function value. As a part of this work, knowledge about how CH4 data can constrain the parameters and processes is derived. Although the optimisation is performed based on a single site's flux data from Siikaneva, the algorithm is useful for larger-scale multi-site studies for a more robust calibration of LPJ-GUESS and similar models, and the results can highlight where model improvements are needed.
  •  
9.
  • Lakomiec, Patryk, et al. (author)
  • Field-scale CH4 emission at a subarctic mire with heterogeneous permafrost thaw status
  • 2021
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:20, s. 5811-5830
  • Journal article (peer-reviewed)abstract
    • The Arctic is exposed to even faster temperature changes than most other areas on Earth. Constantly increasing temperature will lead to thawing permafrost and changes in the methane (CH4) emissions from wetlands. One of the places exposed to those changes is the Abisko–Stordalen Mire in northern Sweden, where climate and vegetation studies have been conducted since the 1970s.In our study, we analyzed field-scale methane emissions measured by the eddy covariance method at Abisko–Stordalen Mire for 3 years (2014–2016). The site is a subarctic mire mosaic of palsas, thawing palsas, fully thawed fens, and open water bodies. A bimodal wind pattern prevalent at the site provides an ideal opportunity to measure mire patches with different permafrost status with one flux measurement system. The flux footprint for westerly winds was dominated by elevated palsa plateaus, while the footprint was almost equally distributed between palsas and thawing bog-like areas for easterly winds. As these patches are exposed to the same climatic and weather conditions, we analyzed the differences in the responses of their methane emission for environmental parameters.The methane fluxes followed a similar annual cycle over the 3 study years, with a gentle rise during spring and a decrease during autumn, without emission bursts at either end of the ice-free season. The peak emission during the ice-free season differed significantly for the two mire areas with different permafrost status: the palsa mire emitted 19 mg-C m−2 d−1 and the thawing wet sector 40 mg-C m−2 d−1. Factors controlling the methane emission were analyzed using generalized linear models. The main driver for methane fluxes was peat temperature for both wind sectors. Soil water content above the water table emerged as an explanatory variable for the 3 years for western sectors and the year 2016 in the eastern sector. The water table level showed a significant correlation with methane emission for the year 2016 as well. Gross primary production, however, did not show a significant correlation with methane emissions.Annual methane emissions were estimated based on four different gap-filing methods. The different methods generally resulted in very similar annual emissions. The mean annual emission based on all models was 3.1 ± 0.3 g-C m−2 a−1 for the western sector and 5.5 ± 0.5 g-C m−2 a−1 for the eastern sector. The average annual emissions, derived from these data and a footprint climatology, were 2.7 ± 0.5 and 8.2 ± 1.5 g-C m−2 a−1 for the palsa and thawing surfaces, respectively. Winter fluxes were relatively high, contributing 27 %–45 % to the annual emissions.
  •  
10.
  • Menoud, Malika, et al. (author)
  • New contributions of measurements in Europe to the global inventory of the stable isotopic composition of methane
  • 2022
  • In: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 14:9, s. 4365-4386
  • Journal article (peer-reviewed)abstract
    • Recent climate change mitigation strategies rely on the reduction of methane (CH4) emissions. Carbon and hydrogen isotope ratio (δ13CCH4 and δ2HCH4) measurements can be used to distinguish sources and thus to understand the CH4 budget better. The CH4 emission estimates by models are sensitive to the isotopic signatures assigned to each source category, so it is important to provide representative estimates of the different CH4 source isotopic signatures worldwide. We present new measurements of isotope signatures of various, mainly anthropogenic, CH4 sources in Europe, which represent a substantial contribution to the global dataset of source isotopic measurements from the literature, especially for δ2HCH4. They improve the definition of δ13CCH4 from waste sources, and demonstrate the use of δ2HCH4 for fossil fuel source attribution. We combined our new measurements with the last published database of CH4 isotopic signatures and with additional literature, and present a new global database. We found that microbial sources are generally well characterised. The large variability in fossil fuel isotopic compositions requires particular care in the choice of weighting criteria for the calculation of a representative global value. The global dataset could be further improved by measurements from African, South American, and Asian countries, and more measurements from pyrogenic sources. We improved the source characterisation of CH4 emissions using stable isotopes and associated uncertainty, to be used in top-down studies. We emphasise that an appropriate use of the database requires the analysis of specific parameters in relation to source type and the region of interest. The final version of the European CH4 isotope database coupled with a global inventory of fossil and non-fossil δ13CCH4 and δ2HCH4 source signature measurements is available at 10.24416/UU01-YP43IN .
  •  
11.
  • Papale, Dario, et al. (author)
  • Standards and Open Access are the ICOS Pillars Reply to "Comments on 'The Integrated Carbon Observation System in Europe'"
  • 2023
  • In: Bulletin of the American Meteorological Society. - 0003-0007. ; 104:12, s. 953-955
  • Journal article (peer-reviewed)abstract
    • In his comment (Kowalski 2023) on our recent publication (Heiskanen et al. 2022) where we present the Integrated Carbon Observation System (ICOS) research infrastructure, Andrew Kowalski introduces three important and, in our opinion, different potential issues in the definition, collection, and availability of field measurements made by the ICOS network, and he proposes possible solutions to these issues.
  •  
12.
  • Petersen, Ross, et al. (author)
  • Vertical distribution of sources and sinks of volatile organic compounds within a boreal forest canopy
  • 2023
  • In: Atmospheric Chemistry and Physics. - 1680-7324. ; 23:13, s. 7839-7858
  • Journal article (peer-reviewed)abstract
    • The ecosystem-atmosphere flux of biogenic volatile organic compounds (BVOCs) has important impacts on tropospheric oxidative capacity and the formation of secondary organic aerosols, influencing air quality and climate. Here we present within-canopy measurements of a set of dominant BVOCs in a managed spruce- and pine-dominated boreal forest located at the ICOS (Integrated Carbon Observation System) station Norunda in Sweden, collected using proton-transfer-reaction mass spectrometry (PTR-MS) during 2014-2016 and vertical emission profiles derived from these data. Ozone concentrations were simultaneously measured in conjunction with these PTR-MS measurements. The main BVOCs investigated with the PTR-MS were isoprene, monoterpenes, methanol, acetaldehyde, and acetone. The distribution of BVOC sources and sinks in the forest canopy was explored using Lagrangian dispersion matrix methods, in particular continuous near-field theory. The forest canopy was found to contribute ca. 86% to the total monoterpene emission in summertime, whereas the below-canopy and canopy emissions were comparable (ca. 42% and 58%, respectively) during the fall period. This result indicates that boreal forest litter and other below-canopy emitters are a principal source of total forest monoterpene emissions during the fall months. During night, our results for methanol, acetone, and acetaldehyde seasonally present strong sinks in the forest canopy, especially in the fall, likely due to the nighttime formation of dew on vegetation surfaces.
  •  
13.
  • Rinne, Janne, et al. (author)
  • Alternative Turbulent Trace Gas Flux Measurement Methods
  • 2021
  • In: Springer Handbook of Atmospheric Measurements. - Cham : Springer International Publishing. - 2522-8706 .- 2522-8692. - 9783030521714 - 9783030521707 ; , s. 1505-1530
  • Book chapter (peer-reviewed)abstract
    • The eddy-covariance (EC) method is the most direct micrometeorological approach to measure the surface–atmosphere trace gases under turbulent conditions. The measurement of trace gas fluxes by eddy covariance requires fast-response instruments (higher than 1 Hz) to measure the turbulent fluctuations of vertical wind velocity and trace gas mixing ratio. For many trace gas species, such fast response analyzers are either not available or do not meet the required precision, long-term stability, and ease of operation under field conditions.Thus, a range of alternative flux measurement techniques have been developed to relax the requirement for fast response time and precision of analysis of the targeted trace gases. These alternative trace gas flux measurement methods are based on surface layer gradients, eddy accumulation, and disjunct eddy-covariance approaches. Of these, the two latter are presented in this chapter. In addition, the surface layer renewal approach,which can be used to understand turbulent exchange processes, and the nocturnal boundary layer Keeling plot approach for determination of the isotopic composition of emitted gases under stable conditions are also described.
  •  
14.
  • Roslin, Tomas, et al. (author)
  • A molecular-based identification resource for the arthropods of Finland
  • 2022
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 22:2, s. 803-822
  • Journal article (peer-reviewed)abstract
    • To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society. 
  •  
15.
  • Räsänen, Matti, et al. (author)
  • Carbon dioxide and methane fluxes from mounds of African fungus-growing termites
  • 2023
  • In: Biogeosciences. - 1726-4170. ; 20:19, s. 4029-4042
  • Journal article (peer-reviewed)abstract
    • Termites play an essential role in decomposing dead plant material in tropical ecosystems and are thus major sources of gaseous C emissions in many environments. In African savannas, fungus-growing termites are among the ecologically most influential termite species. We studied the gas exchange from mounds of two closely related fungus-growing species (Macrotermes subhyalinus and M. michaelseni, respectively) in two habitats representing different vegetation types (grassland, bushland) together with soil fluxes around the mounds. The fluxes from active termite mounds varied from 120 to 2100 mg CO2-C m-2h-1 for carbon dioxide (CO2) and from 0.06 to 3.7 mg CH4-C m-2 h-1 for methane (CH4) fluxes. Mound CO2 fluxes varied seasonally with a 64 % decrease and 41 % increase in the fluxes from the dry to wet season at the grassland and bushland sites, respectively. During the wet season, the CO2 fluxes were significantly correlated with termite mound volume. The diurnal measurements from two M. michaelseni mounds suggest that the gas fluxes peak during the daytime, possibly reflecting changes in mound internal air circulation. Soil fluxes of both CO2 and CH4 were enhanced at up to 2 m distance from the mounds compared to the local soil respiration, indicating that, in addition to mound ventilation structures, a small proportion of the metabolic gases produced also leave the nest via surrounding soils.
  •  
16.
  • Räsänen, Matti, et al. (author)
  • Root-zone soil moisture variability across African savannas : From pulsed rainfall to land-cover switches
  • 2020
  • In: Ecohydrology. - : Wiley. - 1936-0584 .- 1936-0592. ; 13:5
  • Journal article (peer-reviewed)abstract
    • The main source of soil moisture variability in savanna ecosystems is pulsed rainfall. Rainfall pulsing impacts water-stress durations, soil moisture switching between wet-to-dry and dry-to-wet states, and soil moisture spectra as well as derived measures from it such as soil moisture memory. Rainfall pulsing is also responsible for rapid changes in grassland leaf area and concomitant changes in evapotranspirational (ET) losses, which then impact soil moisture variability. With the use of a hierarchy of models and soil moisture measurements, temporal variability in root-zone soil moisture and water-stress periods are analysed at four African sites ranging from grass to miombo savannas. The normalized difference vegetation index (NDVI) and potential ET (PET)-adjusted ET model predict memory timescale and dry persistence in agreement with measurements. The model comparisons demonstrate that dry persistence and mean annual dry periods must account for seasonal and interannual changes in maximum ET represented by NDVI and to a lesser extent PET. Interestingly, the precipitation intensity and soil moisture memory were linearly related across three savannas with ET/infiltration ∼ 1.0. This relation and the variability of length and timing of dry periods are also discussed.
  •  
17.
  • Räsänen, Matti, et al. (author)
  • The effect of rainfall amount and timing on annual transpiration in a grazed savanna grassland
  • 2022
  • In: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 26:22, s. 5773-5791
  • Journal article (peer-reviewed)abstract
    • The role of precipitation (P) variability with respect to evapotranspiration (ET) and its two components, transpiration (T) and evaporation (E), from savannas continues to draw significant research interest given its relevance to a number of ecohydrological applications. Our study reports on 6 years of measured ET and estimated T and E from a grazed savanna grassland at Welgegund, South Africa. Annual P varied significantly with respect to amount (508 to 672 mm yr-1), with dry years characterized by infrequent early-season rainfall. T was determined using annual water-use efficiency and gross primary production estimates derived from eddy-covariance measurements of latent heat flux and net ecosystem CO2 exchange rates. The computed annual T for the 4 wet years with frequent early wet-season rainfall was nearly constant, 326±19 mm yr-1 (T/ET=0.51), but was lower and more variable between the 2 dry years (255 and 154 mm yr-1, respectively). Annual T and T/ET were linearly related to the early wet-season storm frequency. The constancy of annual T during wet years is explained by the moderate water stress of C4 grasses as well as trees' ability to use water from deeper layers. During extreme drought, grasses respond to water availability with a dieback-regrowth pattern, reducing leaf area and transpiration and, thus, increasing the proportion of transpiration contributed by trees. The works suggest that the early-season P distribution explains the interannual variability in T, which should be considered when managing grazing and fodder production in these grasslands.
  •  
18.
  • Seco, Roger, et al. (author)
  • Strong isoprene emission response to temperature in tundra vegetation
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:38, s. 2118014119-2118014119
  • Journal article (peer-reviewed)abstract
    • Emissions of biogenic volatile organic compounds (BVOCs) are a crucial component of biosphere-atmosphere interactions. In northern latitudes, climate change is amplified by feedback processes in which BVOCs have a recognized, yet poorly quantified role, mainly due to a lack of measurements and concomitant modeling gaps. Hence, current Earth system models mostly rely on temperature responses measured on vegetation from lower latitudes, rendering their predictions highly uncertain. Here, we show how tundra isoprene emissions respond vigorously to temperature increases, compared to model results. Our unique dataset of direct eddy covariance ecosystem-level isoprene measurements in two contrasting ecosystems exhibited Q10 (the factor by which the emission rate increases with a 10 °C rise in temperature) temperature coefficients of up to 20.8, that is, 3.5 times the Q10 of 5.9 derived from the equivalent model calculations. Crude estimates using the observed temperature responses indicate that tundra vegetation could enhance their isoprene emissions by up to 41% (87%)-that is, 46% (55%) more than estimated by models-with a 2 °C (4 °C) warming. Our results demonstrate that tundra vegetation possesses the potential to substantially boost its isoprene emissions in response to future rising temperatures, at rates that exceed the current Earth system model predictions.
  •  
19.
  • Seco, Roger, et al. (author)
  • Volatile organic compound fluxes in a subarctic peatland and lake
  • 2020
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:21, s. 13399-13416
  • Journal article (peer-reviewed)abstract
    • Ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs) that are a small but highly reactive part of the carbon cycle. VOCs have important ecological functions and implications for atmospheric chemistry and climate. We measured the ecosystem-level surface-atmosphere VOC fluxes using the eddy covariance technique at a shallow subarctic lake and an adjacent graminoid-dominated fen in northern Sweden during two contrasting periods: the peak growing season (mid-July) and the senescent period post-growing season (September-October). In July, the fen was a net source of methanol, acetaldehyde, acetone, dimethyl sulfide, isoprene, and monoterpenes. All of these VOCs showed a did cycle of emission with maxima around noon and isoprene dominated the fluxes (93 +/- 22 mu mol m(-2) d(-1), mean +/- SE). Isoprene emission was strongly stimulated by temperature and presented a steeper response to temperature (Q(10) = 14.5) than that typically assumed in biogenic emission models, supporting the high temperature sensitivity of arctic vegetation. In September, net emissions of methanol and isoprene were drastically reduced, while acetaldehyde and acetone were deposited to the fen, with rates of up to -6.7 +/- 2.8 mu mol m(-2) d(-1) for acetaldehyde. Remarkably, the lake was a sink for acetaldehyde and acetone during both periods, with average fluxes up to -19 +/- 1.3 mu mol m(-2) d(-1) of acetone in July and up to -8.5 +/- 2.3 mu mol m(-2) d(-1) of acetaldehyde in September. The deposition of both carbonyl compounds correlated with their atmospheric mixing ratios, with deposition velocities of -0.23 +/- 0.01 and -0.68 +/- 0.03 cm s(-1) for acetone and acetaldehyde, respectively. Even though these VOC fluxes represented less than 0.5 % and less than 5 % of the CO2 and CH4 net carbon ecosystem exchange, respectively, VOCs alter the oxidation capacity of the atmosphere. Thus, understanding the response of their emissions to climate change is important for accurate prediction of the future climatic conditions in this rapidly warming area of the planet.
  •  
20.
  • Wachiye, Sheila, et al. (author)
  • Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya
  • 2020
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:8, s. 2149-2167
  • Journal article (peer-reviewed)abstract
    • Field measurement data on greenhouse gas (GHG) emissions are still scarce for many land-use types in Africa, causing a high level of uncertainty in GHG budgets. To address this gap, we present in situ measurements of carbon dioxide (CO2 ), nitrous oxide (N2 O), and methane (CH4) emissions from the lowlands of southern Kenya. We conducted eight chamber measurement campaigns on gas exchange from four dominant land-use types (LUTs) comprising (1) cropland, (2) bushland, (3) grazing land, and (4) conservation land between 29 November 2017 and 3 November 2018, accounting for regional seasonality (wet and dry seasons and transitions periods). Mean CO2 emissions for the whole observation period were the highest by a significant margin (p value<0.05) in the conservation land (75±6 mgCO2 Cm-2 h-1) compared to the three other sites, which ranged from 45±4 mgCO2 Cm-2 h-1 (bushland) to 50±5 mgCO2 Cm-2 h-1 (grazing land). Furthermore, CO2 emissions varied between seasons, with significantly higher emissions in the wet season than the dry season. Mean N2 O emissions were highest in cropland (2:7±0:6 μgN2 O-Nm-2 h-1) and lowest in bushland (1:2± 0:4 μgN2 O-Nm-2 h-1) but did not vary with season. In fact, N2 O emissions were very low both in the wet and dry seasons, with slightly elevated values during the early days of the wet seasons in all LUTs. On the other hand, CH4 emissions did not show any significant differences across LUTs and seasons. Most CH4 fluxes were below the limit of detection (LOD, ±0:03 mgCH4-Cm-2 h-1). We attributed the difference in soil CO2 emissions between the four sites to soil C content, which differed between the sites and was highest in the conservation land. In addition, CO2 and N2 O emissions positively correlated with soil moisture, thus an increase in soil moisture led to an increase in emissions. Furthermore, vegetation cover explained the seasonal variation in soil CO2 emissions as depicted by a strong positive correlation between the normalized difference vegetation index (NDVI) and CO2 emissions, most likely because, with more green (active) vegetation cover, higher CO2 emissions occur due to enhanced root respiration compared to drier periods. Soil temperature did not show a clear correlation with either CO2 or N2 O emissions, which is likely due to the low variability in soil temperature between seasons and sites. Based on our results, soil C, active vegetation cover, and soil moisture are key drivers of soil GHG emissions in all the tested LUTs in southern Kenya. Our results are within the range of previous GHG flux measurements from soils from various LUTs in other parts of Kenya and contribute to more accurate baseline GHG emission estimates from Africa, which are key to reducing uncertainties in global GHG budgets as well as for informing policymakers when discussing low-emission development strategies.
  •  
21.
  • Watts, Jennifer D., et al. (author)
  • Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget
  • 2023
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 29:7, s. 1870-1889
  • Journal article (peer-reviewed)abstract
    • Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-21 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view