SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rius M.) srt2:(2020-2023)"

Search: WFRF:(Rius M.) > (2020-2023)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Van Haute, L., et al. (author)
  • TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease
  • 2023
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms.
  •  
4.
  • Mattos, Caio R. C., et al. (author)
  • Rainfall and topographic position determine tree embolism resistance in AmazÃŽnia and Cerrado sites
  • 2023
  • In: Environmental Research Letters. - : Institute of Physics Publishing (IOPP). - 1748-9326. ; 18:11
  • Journal article (peer-reviewed)abstract
    • Droughts are predicted to increase in both frequency and intensity by the end of the 21st century, but ecosystem response is not expected to be uniform across landscapes. Here we assess the importance of the hill-to-valley hydrologic gradient in shaping vegetation embolism resistance under different rainfall regimes using hydraulic functional traits. We demonstrate that rainfall and hydrology modulate together the embolism resistance of tree species in different sites and topographic positions. Although buffered by stable access to groundwater, valley plants are intrinsically more vulnerable to drought-induced embolism than those on hills. In all study sites, the variability in resistance to embolism is higher on hills than on valleys, suggesting that the diversity of strategies to cope with drought is more important for tree communities on hills. When comparing our results with previously published data across the tropics, we show greater variability at the local scale than previously reported. Our results reinforce the urgent need to extend sampling efforts across rainfall regimes and topographic positions to improve the characterization of ecosystem resistance to drought at finer spatial scales.
  •  
5.
  •  
6.
  • Hudson, J., et al. (author)
  • Secondary contacts and genetic admixture shape colonization by an amphiatlantic epibenthic invertebrate
  • 2020
  • In: Evolutionary Applications. - : Wiley. - 1752-4571. ; 13:3, s. 600-612
  • Journal article (peer-reviewed)abstract
    • Research on the genetics of invasive species often focuses on patterns of genetic diversity and population structure within the introduced range. However, a growing body of literature is demonstrating the need to study how native genotypes affect both ecological and evolutionary mechanisms within the introduced range. Here, we used genotyping-by-sequencing to study both native and introduced ranges [based on 1,653 single nucleotide polymorphisms (SNPs)] of the amphiatlantic marine invertebrate Ciona intestinalis. A previous study using microsatellites analysed samples collected along the Swedish west coast and showed the presence of genetically distinct lineages in deep and shallow waters. Using 1,653 single nucleotide polymorphisms (SNPs) from newly collected samples (285 individuals), we first confirmed the presence of this depth-defined genomic divergence along the Swedish coast. We then used approximate Bayesian computation to infer the historical relationship among sites from the North Sea, the English Channel and the northwest Atlantic and found evidence of ancestral divergence between individuals from deep waters off Sweden and individuals from the English Channel. This divergence was followed by a secondary contact that led to a genetic admixture between the ancestral populations (i.e., deep Sweden and English Channel), which originated the genotypes found in shallow Sweden. We then revealed that the colonization of C. intestinalis in the northwest Atlantic was as a result of an admixture between shallow Sweden and the English Channel genotypes across the introduced range. Our results showed the presence of both past and recent genetic admixture events that together may have promoted the successful colonizations of C. intestinalis. Our study suggests that secondary contacts potentially reshape the evolutionary trajectories of invasive species through the promotion of intraspecific hybridization and by altering both colonization patterns and their ecological effects in the introduced range.
  •  
7.
  •  
8.
  • Sim, Thomas G., et al. (author)
  • Regional variability in peatland burning at mid-to high-latitudes during the Holocene
  • 2023
  • In: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 305
  • Journal article (peer-reviewed)abstract
    • Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal re-cords from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (similar to 9e6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires.(c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view