SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ruda Alessandro) srt2:(2021)"

Search: WFRF:(Ruda Alessandro) > (2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nestor, Gustav, et al. (author)
  • A detailed picture of a protein-carbohydrate hydrogen-bonding network revealed by NMR and MD simulations
  • 2021
  • In: Glycobiology. - : Oxford University Press (OUP). - 0959-6658 .- 1460-2423. ; 31:4, s. 508-518
  • Journal article (peer-reviewed)abstract
    • Cyanovirin-N (CV-N) is a cyanobacterial lectin with antiviral activity towards HIV and several other viruses. Here, we identify mannoside hydroxyl protons that are hydrogen bonded to the protein backbone of the CV-N domain B binding site, using NMR spectroscopy. For the two carbohydrate ligands Manα(1→2)ManαOMe and Manα(1→2) Manα(1→6)ManαOMe five hydroxyl protons are involved in hydrogen-bonding networks. Comparison with previous crystallographic results revealed that four of these hydroxyl protons donate hydrogen bonds to protein backbone carbonyl oxygens in solution and in the crystal. Hydrogen bonds were not detected between the side chains of Glu41 and Arg76 with sugar hydroxyls, as previously proposed for CV-N binding of mannosides. Molecular dynamics simulations of the CV-N/Manα(1→2)Manα(1→6)ManαOMe complex confirmed the NMR-determined hydrogen-bonding network. Detailed characterization of CV-N/mannoside complexes provides a better understanding of lectin-carbohydrate interactions and opens up to the use of CV-N and similar lectins as antiviral agents.
  •  
2.
  • Ruda, Alessandro, 1990-, et al. (author)
  • O-Methylation in Carbohydrates : An NMR and MD Simulation Study with Application to Methylcellulose
  • 2021
  • In: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 125:43, s. 11967-11979
  • Journal article (peer-reviewed)abstract
    • Methylated carbohydrates are important from both biological and technical perspectives. Specifically, methylcellulose is an interesting cellulose derivative that has applications in foods, materials, cosmetics, and many other fields. While the molecular dynamics simulation technique has the potential for both advancing the fundamental understanding of this polymer and aiding in the development of specific applications, a general drawback is the lack of experimentally validated interaction potentials for the methylated moieties. In the present study, simulations using the GROMOS 56 carbohydrate force field are compared to NMR spin–spin coupling constants related to the conformation of the exocyclic torsion angle ω in d-glucopyranose and derivatives containing a 6-O-methyl substituent and a 13C-isotopologue thereof. A 3JCC Karplus-type relationship is proposed for the C5–C6–O6–CMe torsion angle. Moreover, solvation free energies are compared to experimental data for small model compounds. Alkylation in the form of 6-O-methylation affects exocyclic torsion only marginally. Computed solvation free energies between nonmethylated and methylated molecules were internally consistent, which validates the application of these interaction potentials for more specialized purposes. 
  •  
3.
  • Rush, Jeffrey S., et al. (author)
  • PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides
  • 2021
  • Other publication (other academic/artistic)abstract
    • The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view