SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Seppa P.) srt2:(2010-2014)"

Search: WFRF:(Seppa P.) > (2010-2014)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sundqvist, Hanna S., et al. (author)
  • Arctic Holocene proxy climate database - new approaches to assessing geochronological accuracy and encoding climate variables
  • 2014
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 10:4, s. 1605-1631
  • Journal article (peer-reviewed)abstract
    • We present a systematic compilation of previously published Holocene proxy climate records from the Arctic. We identified 170 sites from north of 58 degrees N latitude where proxy time series extend back at least to 6 cal ka (all ages in this article are in calendar years before present - BP), are resolved at submillennial scale (at least one value every 400 +/- 200 years) and have age models constrained by at least one age every 3000 years. In addition to conventional meta-data for each proxy record (location, proxy type, reference), we include two novel parameters that add functionality to the database. First, climate interpretation is a series of fields that logically describe the specific climate variable(s) represented by the proxy record. It encodes the proxy-climate relation reported by authors of the original studies into a structured format to facilitate comparison with climate model outputs. Second, geochronology accuracy score (chron score) is a numerical rating that reflects the overall accuracy of C-14-based age models from lake and marine sediments. Chron scores were calculated using the original author-reported C-14 ages, which are included in this database. The database contains 320 records (some sites include multiple records) from six regions covering the circumpolar Arctic: Fennoscandia is the most densely sampled region (31% of the records), whereas only five records from the Russian Arctic met the criteria for inclusion. The database contains proxy records from lake sediment (60 %), marine sediment (32 %), glacier ice (5 %), and other sources. Most (61 %) reflect temperature (mainly summer warmth) and are primarily based on pollen, chironomid, or diatom assemblages. Many (15 %) reflect some aspect of hydroclimate as inferred from changes in stable isotopes, pollen and diatom assemblages, humification index in peat, and changes in equilibrium-line altitude of glaciers. This comprehensive database can be used in future studies to investigate the spatio-temporal pattern of Arctic Holocene climate changes and their causes. The Arctic Holocene data set is available from NOAA Paleoclimatology.
  •  
2.
  • Gaillard, Marie-José, 1953-, et al. (author)
  • Holocene land-cover reconstructions for studies on land cover-climate feedbacks
  • 2010
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 6, s. 483-499
  • Journal article (peer-reviewed)abstract
    • The major objectives of this paper are: (1) to review the pros and cons of the scenarios of past anthropogenic land cover change (ALCC) developed during the last ten years, (2) to discuss issues related to pollen-based reconstruction of the past land-cover and introduce a new method, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites), to infer long-term records of past land-cover from pollen data, (3) to present a new project (LANDCLIM: LAND cover – CLIMate interactions in NW Europe during the Holocene) currently underway, and show preliminary results of REVEALS reconstructions of the regional land-cover in the Czech Republic for five selected time windows of the Holocene, and (4) to discuss the implications and future directions in climate and vegetation/land-cover modeling, and in the assessment of the effects of human-induced changes in land-cover on the regional climate through altered feedbacks. The existing ALCC scenarios show large discrepancies between them, and few cover time periods older than AD 800. When these scenarios are used to assess the impact of human land-use on climate, contrasting results are obtained. It emphasizes the need for methods such as the REVEALS model-based land-cover reconstructions. They might help to fine-tune descriptions of past land-cover and lead to a better understanding of how long-term changes in ALCC might have influenced climate. The REVEALS model is demonstrated to provide better estimates of the regional vegetation/landcover changes than the traditional use of pollen percentages. This will achieve a robust assessment of land cover at regional- to continental-spatial scale throughout the Holocene. We present maps of REVEALS estimates for the percentage cover of 10 plant functional types (PFTs) at 200 BP and 6000 BP, and of the two open-land PFTs “grassland” and “agricultural land” at five time-windows from 6000 BP to recent time. The LANDCLIM results are expected to provide crucial data to reassess ALCC estimates for a better understanding of the land suface-atmosphere interactions.
  •  
3.
  • Seppa, P., et al. (author)
  • Mosaic structure of native ant supercolonies
  • 2012
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 21:23, s. 5880-5891
  • Journal article (peer-reviewed)abstract
    • According to the inclusive fitness theory, some degree of positive relatedness is required for the evolution and maintenance of altruism. However, ant colonies are sometimes large interconnected networks of nests, which are genetically homogenous entities, causing a putative problem for the theory. We studied spatial structure and genetic relatedness in two supercolonies of the ant Formica exsecta, using nuclear and mitochondrial markers. We show that there may be multiple pathways to supercolonial social organization leading to different spatial genetic structures. One supercolony formed a genetically homogenous population dominated by a single mtDNA haplotype, as expected if founded by a small number of colonizers, followed by nest propagation by budding and domination of the habitat patch. The other supercolony had several haplotypes, and the spatial genetic structure was a mosaic of nuclear and mitochondrial clusters. Genetic diversity probably originated from long-range dispersal, and the mosaic population structure is likely a result of stochastic short-range dispersal of individuals. Such a mosaic spatial structure is apparently discordant with the current knowledge about the integrity of ant colonies. Relatedness was low in both populations when estimated among nestmates, but increased significantly when estimated among individuals sharing the same genetic cluster or haplogroup. The latter association indicates the important historical role of queen dispersal in the determination of the spatial genetic structure.
  •  
4.
  • Strandberg, Gustav, et al. (author)
  • Regional climate model simulations for Europe at 6 and 0.2 k BP : sensitivity to changes in anthropogenic deforestation
  • 2014
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 10:2, s. 661-680
  • Journal article (peer-reviewed)abstract
    • This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, similar to 6 and similar to 0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At similar to 6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5-1 degrees C. At similar to 0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from -1 degrees C in south-western Europe to +1 degrees C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view