SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shibata Y.) srt2:(2020-2023)"

Search: WFRF:(Shibata Y.) > (2020-2023)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Namkoong, H, et al. (author)
  • DOCK2 is involved in the host genetics and biology of severe COVID-19
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 609:7928, s. 754-
  • Journal article (peer-reviewed)abstract
    • Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
  •  
2.
  •  
3.
  • Wang, QBS, et al. (author)
  • The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
  • 2022
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 4830-
  • Journal article (peer-reviewed)abstract
    • Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.
  •  
4.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
5.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
6.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
7.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
8.
  •  
9.
  • Nannya, Y, et al. (author)
  • Postazacitidine clone size predicts long-term outcome of patients with myelodysplastic syndromes and related myeloid neoplasms
  • 2023
  • In: Blood advances. - : American Society of Hematology. - 2473-9537 .- 2473-9529. ; 7:14, s. 3624-3636
  • Journal article (peer-reviewed)abstract
    • Azacitidine is a mainstay of therapy for MDS-related diseases. The purpose of our study is to elucidate the effect of gene mutations on hematological response and overall survival (OS), particularly focusing on their post-treatment clone size. We enrolled a total of 449 patients with MDS or related myeloid neoplasms. They were analyzed for gene mutations in pre- (n=449) and post- (n=289) treatment bone marrow samples using targeted-capture sequencing to assess the impact of gene mutations and their post-treatment clone size on treatment outcomes. In Cox proportional hazard modeling, multi-hit TP53 mutation (HR, 2.03; 95% CI, 1.42-2.91; P<.001), EZH2 mutation (HR, 1.71; 95% CI, 1.14-2.54; P=.009), and DDX41 mutations (HR, 0.33; 95% CI, 0.17-0.62; P<.001), together with age, high-risk karyotypes, low platelet, and high blast counts, independently predicted OS. Post-treatment clone size accounting for all drivers significantly correlated with International Working Group (IWG)-response (P<.001, trend test), except for that of DDX41-mutated clones, which did not predict IWG-response. Combined, IWG-response and post-treatment clone size further improved the prediction of the original model and even that of a recently proposed molecular prediction model, IPSS-M (c-index, 0.653 vs 0.688; P<.001, likelihood ratio test). In conclusion, evaluation of post-treatment clone size, together with pre-treatment mutational profile as well as IWG-response have a role in better prognostication of azacitidine-treated myelodysplasia patients.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Imai, Hiroshi, et al. (author)
  • Water Fountain Sources Monitored in FLASHING
  • 2022
  • In: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 18, s. 333-337
  • Conference paper (peer-reviewed)abstract
    • We have investigated the spectral evolutions of H2O and SiO masers associated with 12 water fountain sources in our FLASHING (Finest Legacy Acquisitions of SiO-/H2O-maser Ignitions by Nobeyama Generation) project. Our monitoring observations have been conducted using the Nobeyama 45 m telescope every 2 weeks-2 months since 2018 December except during summer seasons. We have found new extremely high velocity H2O maser components, breaking the records of jet speeds in this type of sources. Systematic line-of-sight velocity drifts of the H2O maser spectral peaks have also been found, indicating acceleration of the entrained material hosting the masers around the jet. Moreover, by comparing with previous spectral data, we can find decadal growths/decays of H2O maser emission. Possible periodic variations of the maser spectra are further being inspected in order to explore the periodicity of the central stellar system (a pulsating star or a binary). Thus we expect to see the real-time evolution/devolutions of the water fountains over decades.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view