SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tesselaar Erik) srt2:(2015-2019)"

Search: WFRF:(Tesselaar Erik) > (2015-2019)

  • Result 1-24 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bergkvist, Max, et al. (author)
  • Assessment of microcirculation of the skin using Tissue Viability Imaging: A promising technique for detecting venous stasis in the skin
  • 2015
  • In: Microvascular Research. - : Elsevier. - 0026-2862 .- 1095-9319. ; 101, s. 20-25
  • Journal article (peer-reviewed)abstract
    • Background: : Venous occlusion in the skin is difficult to detect by existing measurement techniques. Our aim was to find out whether Tissue Viability Imaging (TiVi) was better at detecting venous occlusion by comparing it with results of laser Doppler flowmetry (LDF) during graded arterial and venous stasis in human forearm skin. Methods: : Arterial and venous occlusions were simulated in 10 healthy volunteers by inflating a blood pressure cuff around the upper right arm. Changes in the concentration of red blood cells (RBC) were measured using TiVi, while skin perfusion and concentration of moving red blood cells (CMBC) were measured using static indices of LDF during exsanguination and subsequent arterial occlusion, postocclusive reactive hyperaemia, and graded increasing and decreasing venous stasis. Results: : During arterial occlusion there was a significant reduction in the mean concentration of RBC from baseline, as well as in perfusion and CMBC (p less than 0.008). Venous occlusion resulted in a significant 28% increase in the concentration of RBC (p = 0.002), but no significant change in perfusion (mean change -14%) while CMBC decreased significantly by 24% (p = 0.02). With stepwise increasing occlusion pressures there was a significant rise in the TiVi index and reduction in perfusion (p = 0.008), while the reverse was seen when venous flow was gradually restored. Conclusion: : The concentration of RBC measured with TiVi changes rapidly and consistently during both total and partial arterial and venous occlusions, while the changes in perfusion, measured by LDF, were less consistent This suggests that TiVi could be a more useful, non-invasive clinical monitoring tool for detecting venous stasis in the skin than LDF.
  •  
2.
  • Bergkvist, Max, 1976- (author)
  • Studies on Polarised Light Spectroscopy
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis project focuses on measurements of dermal microcirculation during vascular provocations with polarised light spectroscopy. This is done with a non-invasive method commercially available as Tissue viability imaging (TiVi) which measures concentration and oxygenation of red blood cells in the papillary dermis. Three studies were done with human subjects and one with an animal model, to validate and compare the TiVi technique with laser Doppler flowmetry, which is an established method of measuring dermal microcirculation.The TiVi consists of a digital camera with polarisation filters in front of the flash and lens, with software for analysis of the picture. When taking a picture with the TiVi, the polarised light that is reflected on the skin surface is absorbed by the second filter over the lens (which is perpendicular to the first filter) but a portion of light penetrates the surface of the skin and is scattered when it is reflected on tissue components. This makes the light depolarised, passes the second filter, and produces a picture for analysis. The red blood cell (RBC) has a distinct absorption pattern that differs between red and green colour compared to melanin and other components of tissue. This difference is used by the software that calculates differences in each picture element and produces a measure of output which is proportional to the concentration of red blood cells. The oxygenation of RBC can also be calculated, as there is a difference in absorption depending on oxygen state.The first paper takes up possible sources of error such as ambient light, and the angle and distance of the camera. The main experiment was to investigate how the local heating reaction is detected with TiVi compared to LDF.In the second paper arterial and venous stasis are examined in healthy subjects with TiVi.The Third paper is an animal study where skin flaps were raised on pigs, and the vascular pedicle is isolated to enable control of inflow and outflow of blood.The measurements were made during partial venous, total venous, and total arterial occlusion. The TiVi recorded changes in the concentration of RBC, oxygenation and heterogeneity and the results were compared with those of laser Doppler flowmetry.In the fourth paper oxygenation and deoxygenation of RBC: s was studied. Studies were made on the forearms of healthy subjects who were exposed to arterial and venous occlusion. Simultaneous measurements were made with TiVi and Enhanced perfusion and oxygen saturation or EPOS, which is a new device that combines laser Doppler flowmetry and diffuse reflectance spectroscopy in one probe.With TiVi, one can measure RBC concentration and oxygenation in the area of an entire picture or in one or multiple user defined regions of interest (ROI). Methods such as laser Doppler flowmetry makes single point measurements, which is a potential source of error both because of the heterogeneity of the microcirculation, and that the circulation be insufficient in the margins of the investigated area. TiVi has been able to measure venous stasis more accurately than laser Doppler flowmetry, and venous stasis is the more common reason for flaps to fail.The TiVi is an accurate way to measure the concentration of RBC and trends in oxygenation of the dermal microcirculation. It has interesting possible applications for microvascular and dermatological research, monitoring of flaps, and diagnosis of peripheral vascular disease. Future clinical studies are needed as well as development of the user interface.  
  •  
3.
  • Bergkvist, Max, 1976-, et al. (author)
  • Vascular Occlusion in a Porcine Flap Model : Effects on Blood Cell Concentration and Oxygenation.
  • 2017
  • In: Plastic and Reconstructive Surgery - Global Open. - : Wolters Kluwer. - 2169-7574. ; 5:11
  • Journal article (peer-reviewed)abstract
    • Background: Venous congestion in skin flaps is difficult to detect. This study evaluated the ability of tissue viability imaging (TiVi) to measure changes in the concentration of red blood cells (CRBC), oxygenation, and heterogeneity during vascular provocations in a porcine fasciocutaneous flap model.Methods: In 5 pigs, cranial gluteal artery perforator flaps were raised (8 flaps in 5 pigs). The arterial and venous blood flow was monitored with ultrasonic flow probes. CRBC, tissue oxygenation, and heterogeneity in the skin were monitored with TiVi during baseline, 50% and 100% venous occlusion, recovery, 100% arterial occlusion and final recovery, thereby simulating venous and arterial occlusion of a free fasciocutaneous flap. A laser Doppler probe was used as a reference for microvascular perfusion in the flap.Results: During partial and complete venous occlusion, increases in CRBC were seen in different regions of the flap. They were more pronounced in the distal part. During complete arterial occlusion, CRBC decreased in all but the most distal parts of the flap. There were also increases in tissue oxygenation and heterogeneity during venous occlusion.Conclusions: TiVi measures regional changes in CRBC in the skin of the flap during arterial and venous occlusion, as well as an increase in oxygenated hemoglobin during venous occlusion that may be the result of reduced metabolism and impaired delivery of oxygen to the tissue. TiVi may provide a promising method for measuring flap viability because it is hand-held, easy to-use, and provides spatial information on venous congestion.
  •  
4.
  • Droog Tesselaar, Erik, 1977-, et al. (author)
  • Changes in skin microcirculation during radiation therapy for breast cancer
  • 2017
  • In: Acta Oncologica. - Oxfordshire : Taylor & Francis. - 0284-186X .- 1651-226X. ; 56:8, s. 1072-1080
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The majority of breast cancer patients who receive radiation treatment are affected by acute radiation-induced skin changes. The assessment of these changes is usually done by subjective methods, which complicates the comparison between different treatments or patient groups. This study investigates the feasibility of new robust methods for monitoring skin microcirculation to objectively assess and quantify acute skin reactions during radiation treatment.MATERIAL AND METHODS: Laser Doppler flowmetry, laser speckle contrast imaging, and polarized light spectroscopy imaging were used to measure radiation-induced changes in microvascular perfusion and red blood cell concentration (RBC) in the skin of 15 patients undergoing adjuvant radiation therapy for breast cancer. Measurements were made before treatment, once a week during treatment, and directly after the last fraction.RESULTS: In the treated breast, perfusion and RBC concentration were increased after 1-5 fractions (2.66-13.3 Gy) compared to baseline. The largest effects were seen in the areola and the medial area. No changes in perfusion and RBC concentration were seen in the untreated breast. In contrast, Radiation Therapy Oncology Group (RTOG) scores were increased only after 2 weeks of treatment, which demonstrates the potential of the proposed methods for early assessment of skin changes. Also, there was a moderate to good correlation between the perfusion (r = 0.52) and RBC concentration (r = 0.59) and the RTOG score given a week later.CONCLUSION: We conclude that radiation-induced microvascular changes in the skin can be objectively measured using novel camera-based techniques before visual changes in the skin are apparent. Objective measurement of microvascular changes in the skin may be valuable in the comparison of skin reactions between different radiation treatments and possibly in predicting acute skin effects at an earlier stage.
  •  
5.
  • Elawa, Sherif, et al. (author)
  • The microvascular response in the skin to topical application of methyl nicotinate : Effect of concentration and variation between skin sites
  • 2019
  • In: Microvascular Research. - : Academic Press. - 0026-2862 .- 1095-9319. ; 124, s. 54-60
  • Journal article (peer-reviewed)abstract
    • BackgroundMethyl nicotinate (MN) induces a local cutaneous erythema in the skin and may be used as a local provocation in the assessment of microcirculation and skin viability. The aims were to measure the effects of increasing doses of MN, to find the concentration that yields the most reproducible effect from day to day and between sites, and to study the variation between skin sites.MethodsMicrovascular responses to topically applied MN at different concentrations were measured in 12 subjects on separate days and on contralateral sides, using laserspeckle contrast imaging (LSCI). MN effects were measured in four different body sites.ResultsAt 20 mmol/L, the response to MN was most reproducible day-to-day and site-to-site, and resulted in a plateau response between 5 and 20 min after application.The skin region of the lower back had a lower perfusion value compared to the epigastric region (p = 0.007). When responses were compared to nearby, unprovoked areas, a significantly larger increase in perfusion was seen in the forearm, compared to all other anatomical sites (p < 0.03).ConclusionA concentration of 20 mmol/L MN generated the most reproducible microvascular response in the skin. The response varies between different body sites.
  •  
6.
  • Elmasry, Moustafa, 1981-, et al. (author)
  • Laser speckle contrast imaging in children with scalds : Its influence on timing of intervention, duration of healing and care, and costs
  • 2019
  • In: Burns. - : Elsevier. - 0305-4179 .- 1879-1409. ; 45:4, s. 798-804
  • Journal article (peer-reviewed)abstract
    • BackgroundScalds are the most common type of burn injury in children, and the initial evaluation of burn depth is a problem. Early identification of deep dermal areas that need excision and grafting would save unnecessary visits and stays in hospital. Laser speckle contrast imaging (LSCI) shows promise for the evaluation of this type of burn. The aim of this study was to find out whether perfusion measured with LSCI has an influence on the decision for operation, duration of healing and care period, and costs, in children with scalds.MethodsWe studied a group of children with scalds whose wounds were evaluated with LSCI on day 3–4 after injury during the period 2012–2015. Regression (adjustment for percentage total body surface area burned (TBSA%), age, and sex) was used to analyse the significance of associations between degree of perfusion and clinical outcome.ResultsWe studied 33 children with a mean TBSA% of 6.0 (95% CI 4.4–7.7)%. Lower perfusion values were associated with operation (area under the receiver-operating characteristic curve 0.86, 95% CI 0.73–1.00). The perfusion cut-off with 100% specificity for not undergoing an operation was ≥191 PU units (66.7% sensitivity and 72.7% accurately classified). Multivariable analyses showed that perfusion was independently associated with duration of healing and care period.ConclusionLower perfusion values, as measured with LSCI, are associated with longer healing time and longer care period. By earlier identification of burns that will be operated, perfusion measurements may further decrease the duration of care of burns in children with scalds.
  •  
7.
  • Ericsson, Elin, et al. (author)
  • Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography
  • 2016
  • In: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 11:6, s. e0155913-
  • Journal article (peer-reviewed)abstract
    • Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion.
  •  
8.
  • Iredahl, Fredrik, 1988- (author)
  • Assessment of microvascular and metabolic responses in the skin
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • The general aim of this project was to develop experimental in vivo models that allow for minimally invasive investigations of responses in the skin to microvascular and metabolic provocations. The cutaneous microvasculature has emerged as a valuable model and been proposed to mirror the microcirculation in other organs. Dysfunction in the cutaneous microcirculation has thus been linked to systemic diseases such as hypertension and diabetes mellitus. Models for investigating skin responses could facilitate the understanding of pathophysiological mechanisms as well as effects of drugs.In the first study, three optical measurement techniques (laser Doppler flowmetry (LDF), laser speckle contrast imaging (LSCI) and tissue viability imaging (TiVi)) were compared against each other and showed differences in their ability to detect microvascular responses to provocations in the skin. TiVi was found more sensitive for measurement of noradrenaline-induced vasoconstriction, while LSCI was more sensitive for measurement of vascular occlusion. In the second study, microvascular responses in the skin to iontophoresis of vasoactive drugs were found to depend on the drug delivery protocol. Perfusion half-life was defined and used to describe the decay in the microvascular response to a drug after iontophoresis. In the third study, the role of nitric oxide (NO) was assessed during iontophoresis of insulin. The results showed a NO-dependent vasodilation in the skin by insulin. In the fourth study the vasoactive and metabolic effects of insulin were studied after both local and endogenous administration. Local delivery of insulin increased skin blood flow, paralleled by increased skin concentrations of interstitial pyruvate and lactate, although no change in glucose concentration was observed. An oral glucose load resulted in an increased insulin concentration in the skin paralleled by an increase in blood flow, as measured using the microdialysis urea clearance technique, although no changes in perfusion was measured by LSCI.The thesis concludes that when studying skin microvascular responses, the choice of measurement technique and the drug delivery protocol has an impact on the measurement results, and should therefore be carefully considered. The thesis also concludes that insulin has metabolic and vasodilatory effects in the skin both when administered locally and as an endogenous response to an oral glucose load. The vasodilatory effect of insulin in the skin is mediated by nitric oxide.
  •  
9.
  • Iredahl, Fredrik, et al. (author)
  • Modeling Perfusion Dynamics in the Skin During Iontophoresis of Vasoactive Drugs Using Single-Pulse and Multiple-Pulse Protocols
  • 2015
  • In: Microcirculation. - : Informa Healthcare / Wiley: 12 months. - 1073-9688 .- 1549-8719. ; 22:6, s. 446-453
  • Journal article (peer-reviewed)abstract
    • Objective: After iontophoresis of vasoactive drugs into the skin, a decrease in perfusion is commonly observed. We delivered vasoactive drugs by iontophoresis using different delivery protocols to study how these affect this decrease in perfusion as measured using LDF. Methods: We measured skin perfusion during iontophoresis of (ACh), MCh, andNAusing a single pulse or separate pulses at different skin sites, and during repeated delivery of ACh at the same site. Results: Perfusion half-life was 6.1 (5.6-6.6) minutes for ACh and 41 (29-69) minutes for MCh (p less than 0.001). The maximum response with multiple pulses of ACh iontophoresis was lower than with a single pulse, 30 (22-37) PU vs. 43 (36-50) PU, p less than 0.001. Vasoconstriction to NA was more rapid with a single pulse than with multiple pulses. The perfusion half-life of ACh decreased with repeated delivery of ACh at the same site-first 16 (14-18), second 5.9 (5.1-6-9) and third 3.2 (2.9-3.5) minutes, p less than 0.001. Conclusions: The drug delivery protocol affects microvascular responses to iontophoresis, possibly as a result of differences in the dynamics of local drug concentrations. Perfusion half-life may be used as a measure to quantify the rate of perfusion recovery after iontophoresis of vasoactive drugs.
  •  
10.
  • Iredahl, Fredrik, et al. (author)
  • Non-Invasive Measurement of Skin Microvascular Response during Pharmacological and Physiological Provocations
  • 2015
  • In: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 10:8, s. 1-15
  • Journal article (peer-reviewed)abstract
    • Introduction Microvascular changes in the skin due to pharmacological and physiological provocations can be used as a marker for vascular function. While laser Doppler flowmetry (LDF) has been used extensively for measurement of skin microvascular responses, Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi) are novel imaging techniques. TiVi measures red blood cell concentration, while LDF and LSCI measure perfusion. Therefore, the aim of this study was to compare responses to provocations in the skin using these different techniques. Method Changes in skin microcirculation were measured in healthy subjects during (1) iontophoresis of sodium nitroprusside (SNP) and noradrenaline (NA), (2) local heating and (3) post-occlusive reactive hyperemia (PORH) using LDF, LSCI and TiVi. Results Iontophoresis of SNP increased perfusion (LSCI: baseline 40.9 +/- 6.2 PU; 10-min 100 +/- 25 PU; pless than0.001) and RBC concentration (TiVi: baseline 119 +/- 18; 10-min 150 +/- 41 AU; p = 0.011). No change in perfusion (LSCI) was observed after iontophoresis of NA (baseline 38.0 +/- 4.4 PU; 10-min 38.9 +/- 5.0 PU; p = 0.64), while RBC concentration decreased (TiVi: baseline 59.6 +/- 11.8 AU; 10-min 54.4 +/- 13.3 AU; p = 0.021). Local heating increased perfusion (LDF: baseline 8.8 +/- 3.6 PU; max 112 +/- 55 PU; pless than0.001, LSCI: baseline 50.8 +/- 8.0 PU; max 151 +/- 22 PU; pless than0.001) and RBC concentration (TiVi: baseline 49.2 +/- 32.9 AU; max 99.3 +/- 28.3 AU; pless than0.001). After 5 minutes of forearm occlusion with prior exsanguination, a decrease was seen in perfusion (LDF: p = 0.027; LSCI: pless than0.001) and in RBC concentration (p = 0.045). Only LSCI showed a significant decrease in perfusion after 5 minutes of occlusion without prior exsanguination (pless than0.001). Coefficients of variation were lower for LSCI and TiVi compared to LDF for most responses. Conclusion LSCI is more sensitive than TiVi for measuring microvascular changes during SNP-induced vasodilatation and forearm occlusion. TiVi is more sensitive to noradrenaline-induced vasoconstriction. LSCI and TiVi show lower inter-subject variability than LDF. These findings are important to consider when choosing measurement techniques for studying skin microvascular responses.
  •  
11.
  • Iredahl, Fredrik, et al. (author)
  • Skin glucose metabolism and microvascular blood flow during local insulin delivery and after an oral glucose load
  • 2016
  • In: Microcirculation. - : Wiley-Blackwell. - 1073-9688 .- 1549-8719. ; 23:7, s. 597-605
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Insulin causes capillary recruitment in muscle and adipose tissue, but the metabolic and microvascular effects of insulin in the skin have not been studied in detail. The aim of this study was to measure glucose metabolism and microvascular blood flow in the skin during local insulin delivery and after an oral glucose load.METHODS: Microdialysis catheters were inserted intracutanously in human subjects. In eight subjects two microdialysis catheters were inserted, one perfused with insulin and one with control solution. First the local effects of insulin was studied, followed by a systemic provocation by an oral glucose load. Additionally, as control experiment, six subjects did not recieve local delivery of insulin or the oral glucose load. During microdialysis the local blood flow was measured by urea clearance and by laser speckle contrast imaging (LSCI).RESULTS: Within 15 minutes of local insulin delivery, microvascular blood flow in the skin increased (urea clearance: P=.047, LSCI: P=.002) paralleled by increases in pyruvate (P=.01) and lactate (P=.04), indicating an increase in glucose uptake. An oral glucose load increased urea clearance from the catheters, indicating an increase in skin perfusion, although no perfusion changes were detected with LSCI. The concentration of glucose, pyruvate and lactate increased in the skin after the oral glucose load.CONCLUSION: Insulin has metabolic and vasodilatory effects in the skin both when given locally and after systemic delivery through an oral glucose load.
  •  
12.
  • Mirdell, Robin, et al. (author)
  • Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds
  • 2018
  • In: Burns. - : ELSEVIER SCI LTD. - 0305-4179 .- 1879-1409. ; 44:1, s. 90-98
  • Journal article (peer-reviewed)abstract
    • Background: Changes in microvascular perfusion in scalds in children during the first four days, measured with laser speckle contrast imaging (LSCI), are related to the time to healing and need for surgical intervention. The aim of this study was to determine the accuracy (sensitivity and specificity) of LSCI on different days after injury in the prediction of healing outcome and if the accuracy can be improved by combining an early and a late measurement. Also, the accuracy of LSCI was compared with that of clinical assessment. Methods: Perfusion was measured between 0-24h and between 72-96h using LSCI in 45 children with scalds. On the same occasions, burn surgeons assessed the burns as healing amp;lt; 14days or healing amp;gt; 14days/surgery. Receiver operating characteristic (ROC) curves were constructed for the early and late measurement and for the double measurement (DM) using two different methods. Results: Sensitivity and specificity were 92.3% (95% CI: 64.0-99.8%) and 78.3% (95% CI: 69.985.3%) between 0-24h, 100% (95% CI: 84.6-100%) and 90.4% (95% CI: 83.8-94.9%) between 72-96h, and was 100% (95% CI: 59.0-100%) and 100% (95% CI: 95.1-100%) when combining the two measurements into a modified perfusion trend. Clinical assessment had an accuracy of 67%, Cohens k=0.23. Conclusion: The perfusion in scalds between 72-96h after injury, as measured using LSCI, is highly predictive of healing outcome in scalds when measured. The predictive value can be further improved by incorporating an early perfusion measurement within 24h after injury. (C) 2017 Elsevier Ltd and ISBI. All rights reserved.
  •  
13.
  • Mirdell, Robin, 1989- (author)
  • Blood Flow Dynamics in Burns
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Objectives:Burns of intermediate thickness are hard to evaluate clinically. This often leads to unnecessary delays of up to 14 days before a surgical decision can be made. To counter this, several objective methods have been developed to determine the healing potential of the wound. Over the years, measurement of perfusion has proven to be the most successful method for evaluation of healing potential. Laser Doppler imaging (LDI) is currently the most used method and can determine surgical need 2 days after injury with an accuracy >90%.  There are however emerging techniques like laser speckle contrast imaging (LSCI), which also measure perfusion. LSCI have several advantages over LDI and is easier to use. LSCI can also investigate aspects of the microcirculation, previously not possible with LDI. The aim of this thesis was to investigate LSCI’s ability to evaluate surgical need in burns of indeterminate partial-thickness.  The first objective was to investigate the dynamics of perfusion the first 14 days after injury. The purpose was to find the optimal time-window for perfusion measurements. The next goal was to determine the accuracy of different perfusion cut-offs. In this second study, the benefit of a subsequent measurement was also investigated. After this, interobserver variation between different profession groups was studied. Both the agreement of perfusion measurements and observer assessments were evaluated. Finally, cardiac vasomotion in combination with perfusion (pulsatility) was investigated as a method to determine surgical need <48 hours after injury.  Methods:Perfusion was measured in a total of 77 patients at the Department of Plastic Surgery, Hand Surgery and Burns at Linköping University Hospital, Sweden. Most of these patients were children and the most common type of burn was scalds. A laser speckle contrast imager (PeriCam PSI System, Perimed AB, Järfälla, Sweden) was used to measure perfusion.  Results:  In the first paper we showed a clear relation between perfusion dynamics and the healing potential of the wound. The changes in perfusion were largest the first 5 days after injury, why this time interval was selected for subsequent papers. Perfusion measurements done day 3-4 after injury could predict surgical need with a sensitivity of 100% (95% CI: 83.9-100%) and a specificity of 90.4% (95% CI: 83.8-94.9%). If two measurements were used, <24 hours and 3-4 days after injury, the accuracy was 100%. Furthermore, we found that different observers could consistently predict perfusion, while there was a large variation in their clinical assessments. This was not improved by extensive burn experience. Finally, pulsatility could be used to predict surgical need the same day as the injury occurred with a sensitivity of 100% (95% CI: 88.1-100%) and a specificity of 98.8% (95% CI: 95.7- 99.9%).  Conclusions:  LSCI is a promising method for evaluation of burns and provides several benefits over LDI. The surgical need of burns can be determined mere hours after injury when pulsatility is measured. However, the benefits of early scald diagnostics in children with LSCI need to be evaluated in a prospective study before the method is ready for routine clinical use.
  •  
14.
  • Mirdell, Robin, 1989-, et al. (author)
  • Data on microcirculatory perfusion dips in the resting nail bed
  • 2018
  • In: Data in Brief. - : Elsevier. - 2352-3409. ; 21, s. 1232-1235
  • Journal article (peer-reviewed)abstract
    • This article contains the raw data from the article entitled: "The presence of synchronized perfusion dips in the microcirculation of the resting nail bed" Mirdell et al. (in press). A laser speckle contrast imager (LSCI) was used to make a total of 21 recordings of the perfusion in the resting nail bed of 10 healthy test subjects. The first 10 recordings were acquired after 5?min of acclimatization. An additional 10 recordings were acquired in the same test subjects, after 20?min of acclimatization. In the last recording, a digital nerve block was applied to the left dig III. The data show the presence of highly irregular perfusion variations, a phenomenon we like to call perfusion dips. The data also show how the perfusion dips can be abolished through a digital nerve block. An algorithm for the quantification of the perfusion dips is included in the data.
  •  
15.
  • Mirdell, Robin, et al. (author)
  • Interobserver reliability of laser speckle contrast imaging in the assessment of burns
  • 2019
  • In: Burns. - : ELSEVIER SCI LTD. - 0305-4179 .- 1879-1409. ; 45:6, s. 1325-1335
  • Journal article (peer-reviewed)abstract
    • Objectives: Laser speckle contrast imaging (LSCI) is an emerging technique for the assessment of burns in humans and interobserver differences have not been studied. The aim of this study was to compare assessments of perfusion images by different professional groups regarding (i) perfusion values and (ii) burn depth assessment. Methods: Twelve observers without LSCI experience were included. The observers were evenly recruited from three professional groups: plastic surgeons with experience in assessing burns, nurses with experience in treating burns, and junior doctors with limited experience of burns. Ten cases were included. Each case consisted of one digital photo of the burn with a pre-marked region of interest (ROI) and two unmarked perfusion images of the same area. The first and the second perfusion image was from 24h and 72-96h after injury, respectively. The perfusion values from both perfusion images were used to generate a LSCI recommendation based on the perfusion trend (the derivative between the two perfusion values). As a last step, each observer was asked to estimate the burn depth using their clinical experience and all available information. Intraclass correlation (ICC) was calculated between the different professional groups and among all observers. Results: Perfusion values and perfusion trends between all observers had an ICC of 0.96 (95% CI 0.91-0.99). Burn depth assessment by all observers yielded an ICC of 0.53 (95% CI: 0.31-0.80) and an accuracy of 0.53 (weighted kappa). LSCI recommendations generated by all observers had an ICC of 0.95 (95% CI: 0.90-0.99). Conclusion: Observers can reliably identify the same ROI, which results in observer-independent perfusion measurements, irrespective of burn experience. Extensive burn experience did not further improve burn depth assessment. The LSCI recommendation was more accurate in all professional groups. Introducing LSCI measurements would be likely improve early assessment of burns. (C) 2019 Elsevier Ltd and ISBI. All rights reserved.
  •  
16.
  • Mirdell, Robin, et al. (author)
  • Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging
  • 2016
  • In: Burns. - : ELSEVIER SCI LTD. - 0305-4179 .- 1879-1409. ; 42:3, s. 648-654
  • Journal article (peer-reviewed)abstract
    • Background: Microvascular perfusion changes in scalds in children during the first weeks after injury is related to the outcome of healing, and measurements of perfusion, based on laser Doppler imaging, have been used successfully to predict the need for excision and grafting. However, the day-to-day changes in perfusion during the first weeks after injury have not to our knowledge been studied in detail. The aim of this study, based on a conservative treatment model where excision and grafting decisions were delayed to day 14 after injury, was to measure changes in perfusion in scalds using laser speckle contrast imaging (LSCI) during the first three weeks after injury. Methods: We measured perfusion with LSCI in 34 patients at regular intervals between 6 h after injury until complete reepithelialization or surgery. Duration of healing was defined as the time to complete reepithelialization. Results: Less perfusion, between 6 and 96 h after injury, was associated with longer duration of healing with the strongest association occurring between 72 and 96 h. Burns that healed within 14 days had relatively high initial perfusion, followed by a peak and subsequent slow decrease. Both the maximum perfusion and the time-to-peak were dependent on the severity of the burn. Burns that needed excision and grafting had less initial perfusion and a gradual reduction over time. Conclusion: The perfusion in scalds in children shows characteristic patterns during the first weeks after injury depending on the duration of wound healing, the greatest difference between wounds of different severity being on the 4th day. Perfusion should therefore preferably be measured on the fourth day if it is to be used in the assessment of burn depth. (c) 2015 Elsevier Ltd and ISBI. All rights reserved.
  •  
17.
  • Mirdell, Robin, et al. (author)
  • The presence of synchronized perfusion dips in the microcirculation of the resting nail bed
  • 2019
  • In: Microvascular Research. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0026-2862 .- 1095-9319. ; 121, s. 71-81
  • Journal article (peer-reviewed)abstract
    • Objectives: Laser speckle contrast imaging (LSCI) has seen limited use in the study of perfusion dynamics such as vasomotion. The aim of this study was to investigate the effects of a prolonged seated position on perfusion dynamics in the nail bed using LSCI. Methods: Perfusion was recorded in digits II to IV bilaterally for 20 min during two separate sessions in ten healthy volunteers. The acclimatization period was 5 min for the 1st session and 20 min for the 2nd. Perfusion variability and the presence of recurring perfusion dips were analyzed. A digital nerve block was done to verify suspected nervous origin of phenomenon. Results: Synchronized phases of vasoconstriction were observed in all subjects with perfusion dips in all digits bilaterally and simultaneously. Application of a digital nerve block abolished perfusion dips. The frequency of this phenomenon increased by 25.0% (95% CI: 1.6 to 49.2%) in the left-hand digits after a prolonged seated position. Perfusion variability increased by 11.6% (95% CI: 2.6 to 20.3%) in the digits of the left hand. Perfusion changes in right-hand digits did not significantly increase. During the 1st session, temperature increased by 2.7 degrees C (1.1 to 4.2) while it decreased by 1.3 degrees C (0.2 to 2.4) during the 2nd session. Conclusion: The observed perfusion dips are of a centrally mediated nervous origin but are also affected by local factors. They are affected by seating duration and differ between left and right hands, likely because of local micro perfusion dips. This phenomenon seems related to digital thermoregulation.
  •  
18.
  • Nilsson, Klara, et al. (author)
  • A Novel Technique to Assess Distal Radioulnar Joint Stability Using Increasing Torque
  • 2019
  • In: Journal of wrist surgery. - : Thieme Medical Publishers. - 2163-3916 .- 2163-3924. ; 8:4, s. 327-334
  • Journal article (peer-reviewed)abstract
    • Background Previous studies on computed tomography (CT) in patients with a suspected triangular fibrocartilage complex (TFCC) injury have not been successful in assessing distal radioulnar joint (DRUJ) laxity. The aim of this study was to develop a novel servomotor-driven device for the assessment of DRUJ by applying increasing torque to the DRUJ in pronation and supination.Methods A custom-built device was designed to function during four-dimensional (4D) CT of the wrist. A torque meter, positioned between the incoming hand holder, and a direct current (DC) servomotor were used for angular positioning and for applying rotational force to the patient's arm. A total of 110 healthy participants were recruited to gather reference values for the range of motion (ROM), maximum torque in neutral and supinated/pronated position, and the ability to withstand an increasing, device-generated torque in these positions. The device was also used during 4D DRUJ CT in five patients with suspected TFCC injuries.Results A gender- and age-relevant reference chart for ROM and torque was created. Men showed a tendency (ns) toward having a larger ROM and increasing strength with increasing age, whereas women showed the opposite. Also, the dominant hand showed a tendency toward having a larger ROM and being stronger than the nondominant hand (ns). A smaller cohort of patients (n = 5) with suspected TFCC injuries showed a significantly decreased ability to withstand increasing torque in both supination (2.1 ± 0.3 vs. 3.1 ± 0.2 s; p < 0.005) and pronation (2.3 ± 0.5 vs. 3.1 ± 0.4 s; p < 0.0005) and also showed a clear laxity on real-time 4D CT image sequences. Decreased strength at all positions was also found (average 74% decrease compared to noninjured side).Conclusion Reference values for torque strength and ability to withstand increasing torque can be used clinically in the assessment of patients with symptoms that could represent ligamentous injuries to the TFCC. The ability to use the device during CT enables radiographic evaluation of instability during increasing torque.Level of Evidence This is a Level II study.
  •  
19.
  • Tesselaar, Erik, 1977-, et al. (author)
  • Acute effects of coffee on skin blood flow and microvascular function
  • 2017
  • In: Microvascular Research. - : Academic Press. - 0026-2862 .- 1095-9319. ; 114, s. 58-64
  • Journal article (peer-reviewed)abstract
    • ObjectiveStudies on the acute effects of coffee on the microcirculation have shown contradicting results. This study aimed to investigate if intake of caffeine-containing coffee changes blood flow and microvascular reactivity in the skin.MethodsWe measured acute changes in cutaneous vascular conductance (CVC) in the forearm and the tip of the finger, the microvascular response to transdermaliontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) and post-occlusive reactive hyperemia (PORH) in the skin, after intake of caffeinated or decaffeinated coffee.ResultsVasodilatation during iontophoresis of ACh was significantly stronger after intake of caffeinated coffee compared to after intake of decaffeinated coffee (1.26 ± 0.20 PU/mm Hg vs. 1.13 ± 0.38 PU/mm Hg, P < 0.001). Forearm CVC before and after PORH were not affected by caffeinated and decaffeinated coffee. After intake of caffeinated coffee, a more pronounced decrease in CVC in the fingertip was observed compared to after intake of decaffeinated coffee (− 1.36 PU/mm Hg vs. − 0.52 PU/mm Hg, P = 0.002).ConclusionsCaffeine, as ingested by drinking caffeinated coffee acutely improves endothelium-dependent microvascular responses in the forearm skin, while endothelium-independent responses to PORH and SNP iontophoresis are not affected. Blood flow in the fingertip decreases markedly during the first hour after drinking caffeinated coffee compared to decaffeinated coffee.
  •  
20.
  • Tesselaar, Erik, et al. (author)
  • ASSESSING THE USEFULNESS OF THE QUASI-IDEAL OBSERVER FORQUALITY CONTROL IN FLUOROSCOPY
  • 2016
  • In: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 169:1-4, s. 360-364
  • Journal article (peer-reviewed)abstract
    • The aim of this work was to evaluate the reliability of the square of the signal-to-noise ratio rate, SNR2rate, as a precise measurement for quality control test in a digital fluoroscopy system. The quasi-ideal model observer was used to measure SNR2rate. The dose rate, pulse rate and field of view were varied, and their effect on dose efficiency, defined as SNR2rate=PKA;rate, was evaluated (where PKA;rate is the air kerma-area product rate). Measurements were repeated to assess reproducibility. The relative standard deviation in SNR2rate=PKA;rate over seven consecutive measurements was 5 %. No significant variation in SNR2rate=PKA;rate was observed across different pulse rates (10–30 pulses s-1). The low-dose-rate setting had a superior dose efficiency compared with the medium- and high-dose-rate settings. A smaller field of view resulted in higher dose efficiency. The results show that SNR2rate=PKA;rate measurements offer the high precision required in quality control constancy tests.
  •  
21.
  • Tesselaar, Erik, et al. (author)
  • CLINICAL AUDIT OF IMAGE QUALITY IN RADIOLOGY USING VISUAL GRADING CHARACTERISTICS ANALYSIS
  • 2016
  • In: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 169:1-4, s. 340-346
  • Journal article (peer-reviewed)abstract
    • The aim of this work was to assess whether an audit of clinical image quality could be efficiently implemented within a limited time frame using visual grading characteristics (VGC) analysis. Lumbar spine radiography, bedside chest radiography and abdominal CT were selected. For each examination, images were acquired or reconstructed in two ways. Twenty images per examination were assessed by 40 radiology residents using visual grading of image criteria. The results were analysed using VGC. Inter-observer reliability was assessed. The results of the visual grading analysis were consistent with expected outcomes. The inter-observer reliability was moderate to good and correlated with perceived image quality (r2 5 0.47). The median observation time per image or image series was within 2 min. These results suggest that the use of visual grading of image criteria to assess the quality of radiographs provides a rapid method for performing an image quality audit in a clinical environment.
  •  
22.
  • Zötterman, Johan, et al. (author)
  • Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation
  • 2017
  • In: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 12:3
  • Journal article (peer-reviewed)abstract
    • Background Laser Speckle Contrast Imaging (LSCI) is a non-invasive and fast technique for measuring microvascular blood flow that recently has found clinical use for burn assessment and evaluation of flaps. Tissue motion caused by for example breathing or patient movements may however affect the measurements in these clinical applications, as may distance between the camera and the skin and tissue curvature. Therefore, the aims of this study were to investigate the effect of frame rate, number of frames/image, movement of the tissue, measuring distance and tissue curvature on the measured perfusion. Methods Methyl nicotinate-induced vasodilation in the forearm skin was measured using LSCI during controlled motion at different speeds, using different combinations of frame rate and number of frames/image, and at varying camera angles and distances. Experiments were made on healthy volunteers and on a cloth soaked in a colloidal suspension of polystyrene microspheres. Results Measured perfusion increased with tissue motion speed. The relation was independent of the absolute perfusion in the skin and of frame rate and number of frames/image. The measured perfusion decreased with increasing angles (16% at 60, p = 0.01). Measured perfusion did not vary significantly between measurement distances from 15 to 40 cm (p = 0.77, %CV 0.9%). Conclusion Tissue motion increases and measurement angles beyond 45 decrease the measured perfusion in LSCI. These findings have to be taken into account when LSCI is used to assess moving or curved tissue surfaces, which is common in clinical applications.
  •  
23.
  • Zötterman, Johan, et al. (author)
  • Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging
  • 2016
  • In: Journal of Plastic, Reconstructive & Aesthetic Surgery. - : ELSEVIER SCI LTD. - 1748-6815 .- 1878-0539. ; 69:7, s. 936-943
  • Journal article (peer-reviewed)abstract
    • Background: In microsurgery, there is a demand for more reliable methods of postoperative monitoring of free flaps, especially with regard to tissue-threatening obstructions of the feeding arteries and draining veins. In this study, we evaluated laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) to assess their possibilities to detect partial and full venous outflow obstruction, as well as full arterial occlusion, in a porcine flap model. Methods: Cranial gluteal artery perforator flaps (CGAPs) were raised, and arterial and venous blood flow to and from the flaps was monitored using ultrasonic flow probes. The venous flow was altered with an inflatable cuff to simulate partial and full (50% and 100%) venous obstruction, and arterial flow was completely obstructed using clamps. The flap microcirculation was monitored using LSCI and LDF. Results: Both LDF and the LSCI detected significant changes in flap perfusion. After partial (50%) venous occlusion, perfusion decreased from baseline, LSCI: 63.5 +/- 12.9 PU (p = 0.01), LDF 31.3 +/- 15.7 (p = 0.64). After 100% venous occlusion, a further decrease in perfusion was observed: LSCI 54.6 +/- 14.2 PU (p amp;lt; 0.001) and LDF 16.7 +/- 12.8 PU (p amp;lt; 0.001). After release of the venous cuff, LSCI detected a return of the perfusion to a level slightly, but not significantly, below the baseline level 70.1 +/- 11.5 PU (p=0.39), while the LDF signal returned to a level not significant from the baseline 36.1 +/- 17.9 PU (p amp;gt; 0.99). Perfusion during 100% arterial occlusion decreased significantly as measured with both methods, LSCI: 48.3 +/- 7.7 (PU, pamp;lt;0.001) and LDF: 8.5 +/- 4.0 PU (pamp;lt;0.001). During 50% and 100% venous occlusion, LSCI showed a 20% and 26% inter-subject variability (CV%), respectively, compared to 50% and 77% for LDF. Conclusions: LSCI offers sensitive and reproducible measurements of flap microcirculation and seems more reliable in detecting decreases in blood perfusion caused by venous obstruction. It also allows for perfusion measurements in a relatively large area of flap tissue. This may be useful in identifying areas of the flap with compromised microcirculation during and after surgery. (C) 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
  •  
24.
  • Zötterman, Johan, 1975-, et al. (author)
  • The use of laser speckle contrast imaging to predict flap necrosis: An experimental study in a porcine flap model
  • 2019
  • In: Journal of Plastic, Reconstructive & Aesthetic Surgery. - : ELSEVIER SCI LTD. - 1748-6815 .- 1878-0539. ; 72:5, s. 771-777
  • Journal article (peer-reviewed)abstract
    • Background: We evaluated the use of laser speckle contrast imaging (LSCI) in the perioperative planning in reconstructive flap surgery. The aim of the study was to investigate whether LSCI can predict regions with a high risk of developing postoperative necrosis. Our hypothesis was that, perioperatively, such regions have perfusion values below a threshold value and show a negative perfusion trend. Methods: A porcine flap model based on the cranial gluteal artery perforator was used. Images were acquired before surgery, immediately after surgery (t = 0), after 30 min (t =30 min), and after 72h (t = 72 h). Regions of interest (ROIs) were chosen along the central axis of the flap. Clinical evaluation of the flap was made during each time point. Results: At t = 72 h, a demarcation line could be seen at a distance of 15.8 +/- 0.4 cm away from the proximal border of the flaps. At t =0, perfusion decreased gradually from the proximal to the distal ROI. At t =30 min, perfusion was significantly lower in the ROI distal to the final demarcation line than that at t = 0, and in all flaps, these ROIs had a perfusion amp;lt;25 PU. At t= 72 h, perfusion in the ROI proximal to this line returned to baseline levels, whereas perfusion in the distal ROI remained low. Conclusions: In our model, a decrease in perfusion during the first 30 min after surgery and a perfusion amp;lt;25 PU at t = 30 min was a predictor for tissue morbidity 72 h after surgery, which indicates that LSCI is a promising technique for perioperative monitoring in reconstructive flap surgery. (C) 2018 Published by Elsevier Ltd on behalf of British Association of Plastic, Reconstructive and Aesthetic Surgeons.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-24 of 24
Type of publication
journal article (21)
doctoral thesis (3)
Type of content
peer-reviewed (21)
other academic/artistic (3)
Author/Editor
Tesselaar, Erik (13)
Farnebo, Simon (12)
Sjöberg, Folke (8)
Tesselaar, Erik, 197 ... (7)
Iredahl, Fredrik (6)
Farnebo, Simon, 1972 ... (6)
show more...
Mirdell, Robin (6)
Mirdell, Robin, 1989 ... (3)
Sandborg, Michael, 1 ... (2)
Bergkvist, Max (2)
Henricson, Joakim (2)
Bergkvist, Max, 1976 ... (2)
Sjöberg, Folke, Prof ... (2)
Zötterman, Johan, 19 ... (2)
Iredahl, Fredrik, 19 ... (2)
Zötterman, Johan (2)
Lemstra-Idsardi, Auk ... (2)
Steinvall, Ingrid, 1 ... (1)
Sjöberg, Folke, 1956 ... (1)
Elmasry, Moustafa, 1 ... (1)
Dasu, Alexandru (1)
Nilsson, Klara (1)
Droog Tesselaar, Eri ... (1)
Farnebo, Simon, Ass. ... (1)
Tesselaar, Erik, Ass ... (1)
Thorfinn, Johan, Ass ... (1)
Kvernebo, Knut, Prof ... (1)
Henricson, Joakim, 1 ... (1)
Sjöberg, Folke, Prof ... (1)
Dahlström, Nils (1)
Flejmer, Anna M., 19 ... (1)
Ericsson, Elin (1)
Elawa, Sherif (1)
Löfberg, Andreas (1)
Hackethal, Johannes (1)
Hallberg, Peter, 197 ... (1)
Högstedt, Alexandra (1)
Andersson, Sven, Ass ... (1)
Tesselaar, Erik, Ass ... (1)
Farnebo, Simon, Asso ... (1)
Sadda, Veeranjaneyul ... (1)
Ward, Liam (1)
Nezirevic Dernroth, ... (1)
Tesselaar, Erik, Lek ... (1)
Farnebo, Simon, Lekt ... (1)
Van Zuijlen, Paul, P ... (1)
Horsten, Sandra (1)
show less...
University
Linköping University (24)
Uppsala University (1)
Language
English (24)
Research subject (UKÄ/SCB)
Medical and Health Sciences (19)
Engineering and Technology (5)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view