SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vaisanen V) srt2:(2020-2022)"

Search: WFRF:(Vaisanen V) > (2020-2022)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Yan, C., et al. (author)
  • Size-dependent influence of NOx on the growth rates of organic aerosol particles
  • 2020
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:22
  • Journal article (peer-reviewed)abstract
    • Atmospheric new-particle formation (NPF) affects climate by contributing to a large fraction of the cloud condensation nuclei (CCN). Highly oxygenated organic molecules (HOMs) drive the early particle growth and therefore substantially influence the survival of newly formed particles to CCN. Nitrogen oxide (NOx) is known to suppress the NPF driven by HOMs, but the underlying mechanism remains largely unclear. Here, we examine the response of particle growth to the changes of HOM formation caused by NOx. We show that NOx suppresses particle growth in general, but the suppression is rather nonuniform and size dependent, which can be quantitatively explained by the shifted HOM volatility after adding NOx. By illustrating how NOx affects the early growth of new particles, a critical step of CCN formation, our results help provide a refined assessment of the potential climatic effects caused by the diverse changes of NOx level in forest regions around the globe.
  •  
2.
  • Rixen, C., et al. (author)
  • Winters are changing: snow effects on Arctic and alpine tundra ecosystems
  • 2022
  • In: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 572-608
  • Journal article (peer-reviewed)abstract
    • Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season's start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover's role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.
  •  
3.
  • Vaisanen, E., et al. (author)
  • Hunting monolignol transporters: membrane proteomics and biochemical transport assays with membrane vesicles of Norway spruce
  • 2020
  • In: Journal of Experimental Botany. - : Oxford University Press (OUP). - 0022-0957 .- 1460-2431. ; 71:20, s. 6379-6395
  • Journal article (peer-reviewed)abstract
    • Both the mechanisms of monolignol transport and the transported form of monolignols in developing xylem of trees are unknown. We tested the hypothesis of an active, plasma membrane-localized transport of monolignol monomers, dimers, and/or glucosidic forms with membrane vesicles prepared from developing xylem and lignin-forming tissuecultured cells of Norway spruce (Picea abies L. Karst.), as well as from control materials, comprising non-lignifying Norway spruce phloem and tobacco (Nicotiana tabacum L.) BY-2 cells. Xylem and BY-2 vesicles transported both coniferin and p-coumaryl alcohol glucoside, but inhibitor assays suggested that this transport was through the tonoplast. Membrane vesicles prepared from lignin-forming spruce cells showed coniferin transport, but the K-m value for coniferin was much higher than those of xylem and BY-2 cells. Liquid chromatography-mass spectrometry analysis of membrane proteins isolated from spruce developing xylem, phloem, and lignin-forming cultured cells revealed multiple transporters. These were compared with a transporter gene set obtained by a correlation analysis with a selected set of spruce monolignol biosynthesis genes. Biochemical membrane vesicle assays showed no support for ABC-transporter-mediated monolignol transport but point to a role for secondary active transporters (such as MFS or MATE transporters). In contrast, proteomic and co-expression analyses suggested a role for ABC transporters and MFS transporters.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view