SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yang Jinman) srt2:(2022)"

Search: WFRF:(Yang Jinman) > (2022)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zhou, Xin, et al. (author)
  • Simultaneous manipulation of scalable absorbance and the electronic bridge for efficient CO2 photoreduction
  • 2022
  • In: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 10:48, s. 25661-25670
  • Journal article (peer-reviewed)abstract
    • Highly active, low-cost, and stable photocatalysts are the key point for the development of photocatalysis technology, which is one of the most promising advanced approaches to a greener future. As a nonmetallic polymer with high performance, graphitic carbon nitride (g-C3N4) has a notable effect on photocatalytic CO2 reduction. However, the narrow light absorption limits its photocatalytic efficiency. In this work, we prepared red g-C3N4 with the oxygen bridge structure (CSCN) using a grinding thermal polymerization method. The oxygen bridge structure provides more active sites, broadens the light absorption range, and improves the charge separation efficiency. Benefiting from the combined above advantages, CSCN exhibited a rate of photocatalytic reduction of CO2 to CO of 28.5 mu mol g(-1) h(-1). This work proposes a way to enhance the light absorption efficiency and CO2 reduction properties of g-C3N4.
  •  
2.
  • Zhu, Xingwang, et al. (author)
  • Mo-O-Bi Bonds as interfacial electron transport bridges to fuel CO2 photoreduction via in-situ reconstruction of black Bi2MoO6/ BiO2-x heterojunction
  • 2022
  • In: Chemical Engineering Journal. - : ELSEVIER SCIENCE SA. - 1385-8947 .- 1873-3212. ; 429
  • Journal article (peer-reviewed)abstract
    • High photogenerated carrier separation efficiency plays a crucial role in determining the rate of photocatalytic CO2 reduction, but the directional transfer of carrier remains challenging. Here, improved CO2 photoreduction rate and enhanced stability were realized by in-situ construction of BiO2-x nanoparticles on Bi2MoO6 nanoflowers using H2/Ar low temperature plasma. As evidenced by DFT calculations and photocurrent measurements, the Mo-O-Bi bonds between the Bi2MoO6 and BiO2-x interfaces act as a charge transport bridge, facilitating the directional transport of electrons and thus enhancing the rate of photocatalytic reduction reactions involving multiple electrons. Compared with pristine Bi2MoO6, Bi2MoO6/BiO2-x heterojunction has excellent photostability (12 h) and efficient photocatalytic activity (approximate to 3.0 times). This indicates that the charge transfer bridge can effectively inhibit the charge recombination and deactivation of pristine Bi2MoO6. This interatomic charge transfer bridges mode can not only solve the stability problem of bismuth-based materials, but also help to design more photocatalytic systems for efficient reduction of CO2.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
Ding, Penghui (2)
Xu, Hui (2)
Zhu, Xingwang (2)
Zhong, Kang (2)
Yang, Jinman (2)
Zhou, Xin (1)
show more...
Zhang, Xin (1)
Du, Yansheng (1)
Li, Huaming (1)
Hua, Yingjie (1)
Hu, Qingsong (1)
Yi, Jianjian (1)
Wang, Xiaozhi (1)
Zhou, Ganghua (1)
Song, Yanhua (1)
Yuan, Junjie (1)
She, Yuanbin (1)
Wang, Zhaolong (1)
Li, Qidi (1)
Feng, Ziyi (1)
show less...
University
Linköping University (2)
Language
English (2)
Research subject (UKÄ/SCB)
Natural sciences (2)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view