SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhukov A. N.) srt2:(2020-2023)"

Search: WFRF:(Zhukov A. N.) > (2020-2023)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zouganelis, I., et al. (author)
  • The Solar Orbiter Science Activity Plan : Translating solar and heliospheric physics questions into action
  • 2020
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
  •  
2.
  • Boillos, J. M., et al. (author)
  • Isotopic cross sections of fragmentation residues produced by light projectiles on carbon near
  • 2022
  • In: Physical Review C. - 2469-9993 .- 2469-9985. ; 105:1
  • Journal article (peer-reviewed)abstract
    • We measured 135 cross sections of residual nuclei produced in fragmentation reactions of C12, N14, and O13−16,20,22 projectiles impinging on a carbon target at kinetic energies of near 400A MeV, most of them for the first time, with the RB3/LAND setup at the GSI facility in Darmstadt (Germany). The use of this state-of-the-art experimental setup in combination with the inverse kinematics technique gave the full identification in atomic and mass numbers of fragmentation residues with a high precision. The cross sections of these residues were determined with uncertainties below 20% for most of the cases. These data are compared to other previous measurements with stable isotopes and are also used to benchmark different model calculations.
  •  
3.
  • Syndikus, I., et al. (author)
  • Probing the Z = 6 spin-orbit shell gap with (p,2p) quasi-free scattering reactions
  • 2020
  • In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 809
  • Journal article (peer-reviewed)abstract
    • The evolution of the traditional nuclear magic numbers away from the valley of stability is an active field of research. Experimental efforts focus on providing key spectroscopic information that will shed light into the structure of exotic nuclei and understanding the driving mechanism behind the shell evolution. In this work, we investigate the Z=6 spin-orbit shell gap towards the neutron dripline. To do so, we employed NA(p,2p)CA−1 quasi-free scattering reactions to measure the proton component of the 21+ state of 16,18,20C. The experimental findings support the notion of a moderate reduction of the proton 1p1/2−1p3/2 spin-orbit splitting, at variance to recent claims for a prevalent Z=6 magic number towards the neutron dripline.
  •  
4.
  • Bezbakh, A.A., et al. (author)
  • Evidence for the First Excited State of H 7
  • 2020
  • In: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 124:2
  • Journal article (peer-reviewed)abstract
    • The H7 system was populated in the H2(He8,He3)H7 reaction with a 26 AMeV He8 beam. The H7 missing mass energy spectrum, the H3 energy and angular distributions in the H7 decay frame were reconstructed. The H7 missing mass spectrum shows a peak, which can be interpreted either as unresolved 5/2+ and 3/2+ doublet or one of these states at 6.5(5) MeV. The data also provide indications of the 1/2+ ground state of H7 located at 1.8(5) MeV with quite a low population cross section of ∼25 μb/sr within angular range θc.m.≃(17°-27°).
  •  
5.
  • Muzalevskii, I. A., et al. (author)
  • Resonant states in H 7: Experimental studies of the H 2 (He 8, He 3) reaction
  • 2021
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 103:4
  • Journal article (peer-reviewed)abstract
    • The extremely neutron-rich system H7 was studied in the direct H2(He8,He3)H7 transfer reaction with a 26 AMeV secondary He8 beam [Bezbakh et al., Phys. Rev. Lett. 124, 022502 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.022502]. The missing mass spectrum and center-of-mass angular distributions of H7, as well as the momentum distribution of the H3 fragment in the H7 frame, were constructed. In addition, we carried out another experiment with the same beam but a modified setup, which was cross-checked by the study of the H2(Be10,He3)Li9 reaction. A solid experimental evidence is provided that two resonant states of H7 are located in its spectrum at 2.2(5) and 5.5(3)MeV relative to the H3+4n decay threshold. Also, there are indications that the resonant states at 7.5(3) and 11.0(3)MeV are present in the measured H7 spectrum. Based on the energy and angular distributions, obtained for the studied H2(He8,He3)H7 reaction, the weakly populated 2.2(5)-MeV peak is ascribed to the H7 ground state. It is highly plausible that the firmly ascertained 5.5(3)-MeV state is the 5/2+ member of the H7 excitation 5/2+-3/2+ doublet, built on the 2+ configuration of valence neutrons. The supposed 7.5-MeV state can be another member of this doublet, which could not be resolved in Bezbakh et al. [Phys. Rev. Lett. 124, 022502 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.022502]. Consequently, the two doublet members appeared in the spectrum of H7 in the work mentioned above as a single broad 6.5-MeV peak.
  •  
6.
  • Nikolskii, E.Y., et al. (author)
  • H 6 states studied in the H 2 (He 8, He 4) reaction and evidence of an extremely correlated character of the H 5 ground state
  • 2022
  • In: Physical Review C. - 2469-9993 .- 2469-9985. ; 105:6
  • Journal article (peer-reviewed)abstract
    • The extremely neutron-rich system H6 was studied in the direct H2(He8,He4)H6 transfer reaction with a 26A MeV secondary He8 beam. The measured missing mass spectrum shows a broad bump at ≈4-8 MeV above the H3+3n decay threshold. This bump can be interpreted as a broad resonant state in H6 at 6.8(5) MeV. The population cross section of such a presumably p-wave state (or it may be few overlapping states) in the energy range from 4 to 8 MeV is dσ/dωc.m.≃190-80+40μb/sr in the angular range 5°<θc.m.<16°. The obtained missing mass spectrum is practically free of H6 events below 3.5 MeV (dσ/dωc.m. 5μb/sr in the same angular range). The steep rise of the H6 missing mass spectrum at ≈3 MeV allows us to derive the lower limit for the possible resonant-state energy in H6 to be 4.5(3) MeV. According to the paring energy estimates, such a 4.5(3) MeV resonance is a realistic candidate for the H6 ground state (g.s.). The obtained results confirm that the decay mechanism of the H7 g.s. (located at 2.2 MeV above the H3+4n threshold) is the "true"(or simultaneous) 4n emission. The resonance energy profiles and the momentum distributions of fragments of the sequential H6→H5(g.s.)+n→H3+3n decay were analyzed by the theoretically updated direct four-body-decay and sequential-emission mechanisms. The measured momentum distributions of the H3 fragments in the H6 rest frame indicate very strong "dineutron-type"correlations in the H5 ground state decay.
  •  
7.
  • Aran, A., et al. (author)
  • Evidence for local particle acceleration in the first recurrent galactic cosmic ray depression observed by Solar Orbiter : The ion event on 19 June 2020
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • Context. In mid-June 2020, the Solar Orbiter (SolO) mission reached its first perihelion at 0.51 au and started its cruise phase, with most of the in situ instruments operating continuously.Aims. We present the in situ particle measurements of the first proton event observed after the first perihelion obtained by the Energetic Particle Detector (EPD) suite on board SolO. The potential solar and interplanetary (IP) sources of these particles are investigated.Methods. Ion observations from similar to 20 keV to similar to 1 MeV are combined with available solar wind data from the Radio and Plasma Waves (RPW) instrument and magnetic field data from the magnetometer on board SolO to evaluate the energetic particle transport conditions and infer the possible acceleration mechanisms through which particles gain energy. We compare > 17-20 MeV ion count rate measurements for two solar rotations, along with the solar wind plasma data available from the Solar Wind Analyser (SWA) and RPW instruments, in order to infer the origin of the observed galactic cosmic ray (GCR) depressions.Results. The lack of an observed electron event and of velocity dispersion at various low-energy ion channels and the observed IP structure indicate a local IP source for the low-energy particles. From the analysis of the anisotropy of particle intensities, we conclude that the low-energy ions were most likely accelerated via a local second-order Fermi process. The observed GCR decrease on 19 June, together with the 51.8-1034.0 keV nuc(-1) ion enhancement, was due to a solar wind stream interaction region (SIR). The observation of a similar GCR decrease in the next solar rotation favours this interpretation and constitutes the first observation of a recurrent GCR decrease by SolO. The analysis of the recurrence times of this SIR suggests that it is the same SIR responsible for the He-4 events previously measured in April and May. Finally, we point out that an IP structure more complex than a common SIR cannot be discarded, mainly due to the lack of solar wind temperature measurements and the lack of a higher cadence of solar wind velocity observations.
  •  
8.
  • Nikolskii, E.Y., et al. (author)
  • Study of proton and deuteron pickup reactions (d, 3 He), (d, 4 He) with 8 He and 10 Be radioactive beams at ACCULINNA-2 fragment separator
  • 2023
  • In: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. - 0168-583X. ; 541, s. 121-125
  • Journal article (peer-reviewed)abstract
    • The extremely neutron-rich systems 7H, 6H were studied in the 2H(8He, 3He)7H and 2H(8He, 4He)6H proton and deuteron pickup reactions with a 26 AMeV secondary 8He beam produced at the new ACCULINNA-2 fragment separator. In addition, the same proton and deuteron pickup reactions were generated using the 42 AMeV 10Be beam, and the population of low-lying 9Li and 8Li states was measured in reactions 2H(10Be,3He)9Li and 2H(10Be,4He)8Li, respectively. The latter were used as reference measurements in order to check the setup calibration over the excitation energy of 7,6H and to determine the real experimental energy resolution which was compared with Monte Carlo calculations. The corresponding results obtained for the superheavy hydrogen systems 7H, 6H are presented and discussed. Typical excitation spectra of the 9Li and 8Li nuclei are also shown.
  •  
9.
  • Sharov, P.G., et al. (author)
  • FOUR-NEUTRON DECAY CORRELATIONS
  • 2021
  • In: Acta Physica Polonica B, Proceedings Supplement. - 1899-2358. ; 14:4, s. 749-753
  • Journal article (peer-reviewed)abstract
    • The mechanism of simultaneous non-sequential four-neutron emission (or “true” four-neutron decay) has been considered in the phenomenological five-body approach. It is demonstrated that four-neutron decay fragments should have specific energy and angular correlations reflecting strong spatial correlations of “valence” nucleons orbiting in their four-neutron precursors. Due to the Pauli exclusion principle, the valence neutrons are pushed to the symmetry-allowed configurations in the four-neutron precursor structure, which causes a “Pauli focusing” effect. Prospects of the observation of the Pauli focusing have been considered for the hydrogen-7 nucleus. Fingerprints of its nuclear structure or/and decay dynamics are predicted.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view