SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Carlsten C) "

Search: WFRF:(Carlsten C)

  • Result 1-50 of 52
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Carlsten, C., et al. (author)
  • COVID-19 as an occupational disease
  • 2021
  • In: American Journal of Industrial Medicine. - : Wiley. - 0271-3586 .- 1097-0274. ; 64:4, s. 227-237
  • Journal article (peer-reviewed)abstract
    • The impact of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 permeates all aspects of society worldwide. Initial medical reports and media coverage have increased awareness of the risk imposed on healthcare workers in particular, during this pandemic. However, the health implications of COVID-19 for the global workforce are multifaceted and complex, warranting careful reflection and consideration to mitigate the adverse effects on workers worldwide. Accordingly, our review offers a framework for considering this topic, highlighting key issues, with the aim to prompt and inform action, including research, to minimize the occupational hazards imposed by this ongoing challenge. We address respiratory disease as a primary concern, while recognizing the multisystem spectrum of COVID-19-related disease and how clinical aspects are interwoven with broader socioeconomic forces.
  •  
6.
  • Erlandsson, M C, et al. (author)
  • Oestrogen receptor specificity in oestradiol-mediated effects on B lymphopoiesis and immunoglobulin production in male mice.
  • 2003
  • In: Immunology. - 0019-2805. ; 108:3, s. 346-51
  • Journal article (peer-reviewed)abstract
    • Oestrogen treatment down-regulates B lymphopoiesis in the bone marrow of mice. Meanwhile it up-regulates immunoglobulin production. To understand better the oestrogen action on bone marrow male mice lacking oestrogen receptor alpha (ERalpha; ERKO mice), lacking ERbeta (BERKO mice), lacking both receptors (DERKO mice) or wild-type (wt) littermates were castrated and treated for 2.5 weeks with 30 microg/kg 17beta-oestradiol (E2) or vehicle oil as controls. The B lymphopoiesis in the bone marrow was examined by flow cytometry and mature B-cell function was studied using an ELISPOT assay enumerating the B cells in bone marrow and spleen that were actively producing immunoglobulins. In wt mice the frequency of B-lymphopoietic (B220+) cells in the bone marrow decreased from 15% to 5% upon E2 treatment. In ERKO and BERKO mice significant reduction was seen but not of the same magnitude. In DERKO mice no reduction of B lymphopoiesis was seen. In addition, our results show that E2 mediated reduction of different steps in B lymphopoiesis require only ERalpha or both receptors. In wt and BERKO mice E2 treatment resulted in significantly increased levels of B cells actively producing immunoglobulin, while in ERKO and DERKO mice no such change was seen. Similar results were found in both bone marrow and spleen. In conclusion our results clearly show that both ERalpha and ERbeta are required for complete down-regulation of B lymphopoiesis while only ERalpha is needed to up-regulate immunoglobulin production in both bone marrow and spleen.
  •  
7.
  • Erlandsson, M C, et al. (author)
  • Raloxifene- and estradiol-mediated effects on uterus, bone and B lymphocytes in mice.
  • 2002
  • In: The Journal of endocrinology. - 0022-0795. ; 175:2, s. 319-27
  • Journal article (peer-reviewed)abstract
    • Raloxifene is a selective estrogen receptor modulator approved for the prevention of osteoporosis in postmenopausal women. It is selective by having estrogen-agonistic effects on bone, vessels and blood lipids while it is antagonistic on mammary and uterine tissue. Our aim was to study the agonistic and antagonistic properties of the raloxifene analogue LY117018 (LY) on uterus, bone, B lymphopoiesis and B cell function. Oophorectomized and sham-operated animals were treated with s.c. injections of equipotent anti-osteoporotic doses of 17beta-estradiol (E2) (0.1 mg/kg) or LY (3 mg/kg) or vehicle as controls. Effects on bone mineral density (BMD) were studied using peripheral quantitative computed tomography, uterine weight was examined, B lymphopoiesis was examined using flow cytometry and B cell function in bone marrow and spleen was studied by the use of an ELISPOT assay. E2 and LY had similar effects on BMD and bone marrow B lymphopoiesis, while LY had a clear antagonistic effect on endogenous estrogen in uterine tissue and no stimulating effect on the frequency of Ig-producing B cells in sham-operated animals. Our results are discussed in the context of estrogen receptor biology, relations between the immune system and bone metabolism and also with respect to the estrogen-mediated effects on rheumatic diseases.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Islander, Ulrika, 1975, et al. (author)
  • Influence of oestrogen receptor alpha and beta on the immune system in aged female mice.
  • 2003
  • In: Immunology. - : Wiley. - 0019-2805 .- 1365-2567. ; 110:1, s. 149-57
  • Journal article (peer-reviewed)abstract
    • Oestrogen has a dichotomous effect on the immune system. T and B lymphopoiesis in thymus and bone marrow is suppressed, whereas antibody production is stimulated by oestrogen. In this study the importance of the oestrogen receptors (ER) ER-alpha and ER-beta in the aged immune system was investigated in 18 months old-wild type (WT), ER-alpha (ERKO), ER-beta (BERKO) and double ER-alpha and ER-beta (DERKO) knock-out mice, and compared with 4 months old WT mice. Cell phenotypes in bone marrow, spleen and thymus, and the frequency of immunoglobulin (Ig) spot forming cells (SFC) were determined. We show here that the 17-beta-oestradiol (E2)-induced downregulation of B lymphopoietic cells in bone marrow of young ovariectomized mice can be mediated through both ER-alpha and ER-beta. However, only ER-alpha is required for the age-related increased frequency of immunoglobulin M (IgM) SFC in the bone marrow, as well as for the increased production of interleukin-10 (IL-10) from cultured splenocytes in aged mice. Furthermore, increased age in WT mice resulted in lower levels of both pro- and pre-B cells but increased frequency of IgM SFC in the bone marrow, as well as increased frequency of both IgM and IgA SFC in the spleen. Results from this study provide valuable information regarding the specific functions of ER-alpha and ER-beta in the aged immune system.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Arruda, Lucas C. M., et al. (author)
  • A novel CD34-specific T-cell engager efficiently depletes acute myeloid leukemia and leukemic stem cells in vitro and in vivo
  • 2022
  • In: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 107:8, s. 1786-1795
  • Journal article (peer-reviewed)abstract
    • Less than a third of patients with acute myeloid leukemia (AML) are cured by chemotherapy and/or hematopoietic stem cell transplantation, highlighting the need to develop more efficient drugs. The low efficacy of standard treatments is associated with inadequate depletion of CD34(+) blasts and leukemic stem cells, the latter a drug-resistant subpopulation of leukemia cells characterized by the CD34(+)CD38(-) phenotype. To target these drug-resistant primitive leukemic cells better, we have designed a CD34/CD3 bi-specific T-cell engager (BTE) and characterized its anti-leukemia potential in vitro, ex vivo and in vivo. Our results show that this CD34-specific BTE induces CD34-dependent T-cell activation and subsequent leukemia cell killing in a dose-dependent manner, further corroborated by enhanced T-cell-mediated killing at the singlecell level. Additionally, the BTE triggered efficient T-cell-mediated depletion of CD34(+) hematopoietic stem cells from peripheral blood stem cell grafts and CD34(+) blasts from AML patients. Using a humanized AML xenograft model, we confirmed that the CD34-specific BTE had in vivo efficacy by depleting CD34(+) blasts and leukemic stem cells without side effects. Taken together, these data demonstrate that the CD34-specific BTE has robust antitumor effects, supporting development of a novel treatment modality with the aim of improving outcomes of patients with AML and myelodysplastic syndromes.
  •  
22.
  • Börjesson, Anna E, et al. (author)
  • SERMs have substance-specific effects on bone, and these effects are mediated via ER alpha AF-1 in female mice
  • 2016
  • In: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 310:11
  • Journal article (peer-reviewed)abstract
    • The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)alpha, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ER alpha AF-1 for the estradiol (E-2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ER alpha AF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ER alpha AF-1 (ER alpha AF-1(0)) with E-2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ER alpha AF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ER alpha AF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.
  •  
23.
  • Börjesson, Anna E, et al. (author)
  • The role of activation functions 1 and 2 of estrogen receptor-alpha for the effects of estradiol and selective estrogen receptor modulators in male mice
  • 2013
  • In: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 28:5, s. 1117-1126
  • Journal article (peer-reviewed)abstract
    • Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)-. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a nonfunctional ER had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ER for the effects of E2 and selective estrogen receptor modulators (SERMs) on bone mass in males. Three mouse models lacking either ERAF-1 (ERAF-10), ERAF-2 (ERAF-20), or the total ER (ER/) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, whereas it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ER/ or ERAF-20 mirx ERAF-10 mice were tissue-dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERAF-1 for the effects of SERMs, we treated orx WT and ERAF-10 mice with raloxifene (Ral), lasofoxifene (Las), bazedoxifene (Bza), or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency toward increased cortical bone parameters. Importantly, all SERM effects were absent in the orx ERAF-10 mice. In conclusion, ERAF-2 is required for the estrogenic effects on all evaluated parameters, whereas the role of ERAF-1 is tissue-specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERAF-1. Our findings might contribute to the development of bone-specific SERMs in males. (c) 2013 American Society for Bone and Mineral Research.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Erlandsson, M C, et al. (author)
  • Role of oestrogen receptors alpha and beta in immune organ development and in oestrogen-mediated effects on thymus.
  • 2001
  • In: Immunology. - : Wiley. - 0019-2805 .- 1365-2567. ; 103:1, s. 17-25
  • Journal article (peer-reviewed)abstract
    • Oestrogens affect the development and regulation of the immune system. To determine the role of oestrogen receptors alpha (ER-alpha) and beta (ER-beta) on the development of the immune system, male ER-alpha (ERKO) and ER-beta (BERKO) mice, as well as alphabeta-double knockout (DERKO) mice, were studied. Deletion of ER-alpha led to hypoplasia of both thymus and spleen. Interestingly, a higher frequency of immature double CD4+ CD8+ thymocytes was found in ER-alpha(-) mice compared with ER-alpha(+) mice. Female oophorectomized BERKO mice given oestradiol (E2) displayed a similar degree of thymic atrophy compared with the wild-type strain but showed only limited involution of thymus cortex and no alteration of thymic CD4/CD8 phenotype expression. Our data demonstrate that expression of ER-alpha, but not ER-beta, is mandatory in males for development of full-size thymus and spleen, whereas expression of ER-beta is required for E2-mediated thymic cortex atrophy and thymocyte phenotype shift in females. A potential background for the above findings may be down-regulated activity in the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis in males lacking ER-alpha and suppressed sensitivity of females lacking ER-beta to E2-mediated suppression of IGF-1.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Hagström, Hannes, et al. (author)
  • Body composition measurements and risk of hematological malignancies : A population-based cohort study during 20 years of follow-up
  • 2018
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:8
  • Journal article (peer-reviewed)abstract
    • High body mass index (BMI) is associated with development of hematological malignancies (HMs). However, although BMI is a well-established measurement of excess weight, it does not fully reflect body composition and can sometimes misclassify individuals. This study aimed at investigating what body composition measurements had highest association with development of HM. Body composition measurements on 27,557 individuals recorded by healthcare professionals as part of the Malmo Diet and Cancer study conducted in Sweden between 1991-1996 were matched with data from national registers on cancer incidence and causes of death. Cox regression models adjusted for age and sex were used to test the association between one standard deviation increments in body composition measurements and risk of HM. During a median follow-up of 20 years, 564 persons developed an HM. Several body composition measurements were associated with risk of developing an HM, but the strongest association was found for multiple myeloma (MM). Waist circumference (HR 1.31, p = 0.04) and waist-hip ratio (HR 1.61, p = 0.05) had higher risk estimates than BMI (HR 1.18, p = 0.07) for MM. In conclusion, our study shows that measurements of abdominal adiposity better predict the risk of developing HM, particularly MM, compared to BMI.
  •  
36.
  • Hanson, Mikael G. V., et al. (author)
  • A short-term dietary supplementation with high doses of vitamin E increases NK cell cytolytic activity in advanced colorectal cancer patients
  • 2007
  • In: Cancer Immunology and Immunotherapy. - : Springer Science and Business Media LLC. - 0340-7004 .- 1432-0851. ; 56:7, s. 973-984
  • Journal article (peer-reviewed)abstract
    • Cancer patients with advanced disease display signs of immune suppression, which constitute a major obstacle for effective immunotherapy. Both T cells and NK cells are affected by a multitude of mechanisms of which the generation of reactive oxygen species is of major importance. Therefore, we hypothesized that two weeks of high-dose treatment with the anti-oxidant vitamin E may enhance NK cell function in cancer patients by protecting from oxidative stress. Seven patients with colorectal cancer (Dukes stage C and D) received a daily dose of 750 mg of vitamin E during a period of two weeks and the function, phenotype and receptor expression of NK cells were analyzed. The short-term vitamin E treatment significantly improved NK cell cytolytic activity in six out of the seven patients analyzed. The increased NK cell activity in patients' PBMC was not due to increased numbers of NK cells or an increase in the proportion of the CD56(dim) NK cell subpopulation. Furthermore, neither an increased perforin expression nor an enhanced ability of NK cells to produce IFN-gamma was observed as a result of vitamin E treatment. Finally, vitamin E treatment was associated with a minor, but consistent, induction of NKG2D expression in all patients analyzed. In conclusion, this pilot study demonstrates that vitamin E may boost NK cell function in patients with colorectal cancer. Further studies are warranted to explore the potential of vitamin E as an adjuvant for immunotherapy against cancer and to determine the underlying mechanism(s) behind vitamin E induced NK cell activation.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  • Lindberg, Marie K, 1975, et al. (author)
  • Estrogen receptor alpha, but not estrogen receptor beta, is involved in the regulation of the OPG/RANKL (osteoprotegerin/receptor activator of NF-kappa B ligand) ratio and serum interleukin-6 in male mice.
  • 2001
  • In: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 171:3, s. 425-33
  • Journal article (peer-reviewed)abstract
    • Estrogens are important for the male skeleton. Osteoprotegerin (OPG), receptor activator of NF-kappa B ligand (RANKL), interleukin-6 (IL-6), IL-1 and tumor necrosis factor alpha (TNFalpha) have been suggested to be involved in the skeletal effects of estrogen. We treated orchidectomized mice with estradiol for 2 weeks and observed a 143% increase in the trabecular bone mineral density of the distal metaphysis of femur that was associated with a decreased OPG/RANKL mRNA ratio in vertebral bone. A similar decreased OPG/RANKL ratio was also seen after estrogen treatment of ovariectomized female mice. The effect of estrogen receptor (ER) inactivation on the OPG/RANKL ratio was dissected by using intact male mice lacking ER alpha (ERKO), ER beta (BERKO) or both receptors (DERKO). The expression of OPG was increased in ERKO and DERKO but not in BERKO male mice, resulting in an increased OPG/RANKL ratio. Furthermore, serum levels of IL-6 and tartrate-resistant acid phosphatase 5b (TRAP 5b) were decreased in ERKO and DERKO, but not in BERKO male mice. These results demonstrate that ER alpha, but not ER beta, is involved in the regulation of the vertebral OPG/RANKL ratio, serum levels of IL-6 and TRAP 5b in male mice.
  •  
43.
  • Lindberg, Marie K, 1975, et al. (author)
  • Estrogen receptor specificity for the effects of estrogen in ovariectomized mice.
  • 2002
  • In: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 174:2, s. 167-78
  • Journal article (peer-reviewed)abstract
    • Estrogen exerts a variety of important physiological effects, which have been suggested to be mediated via the two known estrogen receptors (ERs), alpha and beta. Three-month-old ovariectomized mice, lacking one or both of the two estrogen receptors, were given estrogen subcutaneously (2.3 micro g/mouse per day) and the effects on different estrogen-responsive parameters, including skeletal effects, were studied. We found that estrogen increased the cortical bone dimensions in both wild-type (WT) and double ER knockout (DERKO) mice. DNA microarray analysis was performed to characterize this effect on cortical bone and it identified four genes that were regulated by estrogen in both WT and DERKO mice. The effect of estrogen on cortical bone in DERKO mice might either be due to remaining ERalpha activity or represent an ERalpha/ERbeta-independent effect. Other effects of estrogen, such as increased trabecular bone mineral density, thymic atrophy, fat reduction and increased uterine weight, were mainly ERalpha mediated.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view