SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cullen Nicholas C) "

Search: WFRF:(Cullen Nicholas C)

  • Result 1-28 of 28
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Conti, David, V, et al. (author)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Journal article (peer-reviewed)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
3.
  • Su, Zhan, et al. (author)
  • Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus.
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:10
  • Journal article (peer-reviewed)abstract
    • Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined=4.09×10(-9); odds ratio (OR)=1.21, 95% confidence interval (CI)=1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (Pcombined=2.74×10(-10); OR=1.14, 95% CI=1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus.
  •  
4.
  • Sumaila, U. Rashid, et al. (author)
  • WTO must ban harmful fisheries subsidies
  • 2021
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6567, s. 544-544
  • Journal article (other academic/artistic)
  •  
5.
  • Brum, Wagner S., et al. (author)
  • A two-step workflow based on plasma p-tau217 to screen for amyloid β positivity with further confirmatory testing only in uncertain cases
  • 2023
  • In: Nature Aging. - 2662-8465. ; 3:9, s. 1079-1090
  • Journal article (peer-reviewed)abstract
    • Cost-effective strategies for identifying amyloid-beta (A beta) positivity in patients with cognitive impairment are urgently needed with recent approvals of anti-A beta immunotherapies for Alzheimer's disease (AD). Blood biomarkers can accurately detect AD pathology, but it is unclear whether their incorporation into a full diagnostic workflow can reduce the number of confirmatory cerebrospinal fluid (CSF) or positron emission tomography (PET) tests needed while accurately classifying patients. We evaluated a two-step workflow for determining A beta-PET status in patients with mild cognitive impairment (MCI) from two independent memory clinic-based cohorts (n = 348). A blood-based model including plasma tau protein 217 (p-tau217), age and APOE epsilon 4 status was developed in BioFINDER-1 (area under the curve (AUC) = 89.3%) and validated in BioFINDER-2 (AUC = 94.3%). In step 1, the blood-based model was used to stratify the patients into low, intermediate or high risk of A beta-PET positivity. In step 2, we assumed referral only of intermediate-risk patients to CSF A beta 42/A beta 40 testing, whereas step 1 alone determined A beta-status for low-and high-risk groups. Depending on whether lenient, moderate or stringent thresholds were used in step 1, the two-step workflow overall accuracy for detecting A beta-PET status was 88.2%, 90.5% and 92.0%, respectively, while reducing the number of necessary CSF tests by 85.9%, 72.7% and 61.2%, respectively. In secondary analyses, an adapted version of the BioFINDER-1 model led to successful validation of the two-step workflow with a different plasma p-tau217 immunoassay in patients with cognitive impairment from the TRIAD cohort (n = 84). In conclusion, using a plasma p-tau217-based model for risk stratification of patients with MCI can substantially reduce the need for confirmatory testing while accurately classifying patients, offering a cost-effective strategy to detect AD in memory clinic settings.
  •  
6.
  • Tustison, Nicholas J., et al. (author)
  • The ANTsX ecosystem for quantitative biological and medical imaging
  • 2021
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 9068-9068
  • Journal article (peer-reviewed)abstract
    • The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis.
  •  
7.
  • Cullen, Nicholas C., et al. (author)
  • Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations
  • 2021
  • In: Nature Aging. - : Springer Science and Business Media LLC. - 2662-8465. ; 1, s. 114-123
  • Journal article (peer-reviewed)abstract
    • We developed models for individualized risk prediction of cognitive decline in mild cognitive impairment (MCI) using plasma biomarkers of β-amyloid (Aβ), tau and neurodegeneration. A total of 573 patients with MCI from the Swedish BioFINDER study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were included in the study. The primary outcomes were longitudinal cognition and conversion to Alzheimer’s disease (AD) dementia. A model combining tau phosphorylated at threonine 181 (P-tau181) and neurofilament light (NfL), but not Aβ42/Aβ40, had the best prognosis performance of all models (area under the curve = 0.88 for 4-year conversion to AD in BioFINDER, validated in ADNI), was stronger than a basic model of age, sex, education and baseline cognition, and performed similarly to cerebrospinal fluid biomarkers. A publicly available online tool for individualized prognosis in MCI based on our combined plasma biomarker models is introduced. Combination of plasma biomarkers may be of high value to identify individuals with MCI who will progress to AD dementia in clinical trials and in clinical practice.
  •  
8.
  • Salvadó, Gemma, et al. (author)
  • Optimal combinations of CSF biomarkers for predicting cognitive decline and clinical conversion in cognitively unimpaired participants and mild cognitive impairment patients: A multi-cohort study
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:7, s. 2943-2955
  • Journal article (peer-reviewed)abstract
    • Introduction: Our objective was determining the optimal combinations of cerebrospinal fluid (CSF) biomarkers for predicting disease progression in Alzheimer's disease (AD) and other neurodegenerative diseases.Methods: We included 1,983 participants from three different cohorts with longitudinal cognitive and clinical data, and baseline CSF levels of A beta 42, A beta 40, phosphorylated tau at threonine-181 (p-tau), neurofilament light (NfL), neurogranin, alpha-synuclein, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), glial fibrillary acidic protein (GFAP), YKL-40, S100b, and interleukin 6 (IL-6) (Elecsys NeuroToolKit).Results: Change of modified Preclinical Alzheimer's Cognitive Composite (mPACC) in cognitively unimpaired (CU) was best predicted by p-tau/A beta 42 alone (R-2 >= 0.31) or together with NfL (R-2 = 0.25), while p-tau/A beta 42 (R-2 >= 0.19) was sufficient to accurately predict change of the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) patients. P-tau/A beta 42 (AUC >= 0.87) and p-tau/A beta 42 together with NfL (AUC >= 0.75) were the best predictors of conversion to AD and all-cause dementia, respectively.Discussion: P-tau/A beta 42 is sufficient for predicting progression in AD, with very high accuracy. Adding NfL improves the prediction of all-cause dementia conversion and cognitive decline.
  •  
9.
  • Scheeren Brum, Wagner, 1997, et al. (author)
  • A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings.
  • 2024
  • In: Nature communications. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Blood-based biomarkers for screening may guide tau positrion emissition tomography (PET) scan referrals to optimize prognostic evaluation in Alzheimer's disease. Plasma Aβ42/Aβ40, pTau181, pTau217, pTau231, NfL, and GFAP were measured along with tau-PET in memory clinic patients with subjective cognitive decline, mild cognitive impairment or dementia, in the Swedish BioFINDER-2 study (n=548) and in the TRIAD study (n=179). For each plasma biomarker, cutoffs were determined for 90%, 95%, or 97.5% sensitivity to detect tau-PET-positivity. We calculated the percentage of patients below the cutoffs (who would not undergo tau-PET; "saved scans") and the tau-PET-positivity rate among participants above the cutoffs (who would undergo tau-PET; "positive predictive value"). Generally, plasma pTau217 performed best. At the 95% sensitivity cutoff in both cohorts, pTau217 resulted in avoiding nearly half tau-PET scans, with a tau-PET-positivity rate among those who would be referred for a scan around 70%. And although tau-PET was strongly associated with subsequent cognitive decline, in BioFINDER-2 it predicted cognitive decline only among individuals above the referral cutoff on plasma pTau217, supporting that this workflow could reduce prognostically uninformative tau-PET scans. In conclusion, plasma pTau217 may guide selection of patients for tau-PET, when accurate prognostic information is of clinical value.
  •  
10.
  • Alifier, Marek, et al. (author)
  • Cardiac Surgery is Associated with Biomarker Evidence of Neuronal Damage.
  • 2020
  • In: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 74:4, s. 1211-1220
  • Journal article (peer-reviewed)abstract
    • Anesthesia and surgery is commonly associated with central nervous system sequelae and cognitive symptoms, which may be caused by neuronal injury. Neuronal injury can be monitored by plasma concentrations of the neuronal biomarkers tau and neurofilament light protein (NFL). Currently, there are no studies examining whether neuronal injury varies between surgical procedures.Our aim was to investigate if neuronal damage is more frequent after cardiac than after otolaryngeal surgery, as estimated by tau and NFL concentrations in plasma.Blood samples were drawn before, during, and after surgery and concentrations of tau, NFL, Aβ40, and Aβ42 were measured in 25 patients undergoing cardiac surgery (9 off-pump and 16 on-pump) and 26 patients undergoing otolaryngeal surgery.Tau increased during surgery (1752%, p=0.0001) and NFL rose seven days post-surgery (1090%, p<0.0001) in patients undergoing cardiac surgery; even more in patients on-pump than off-pump. No changes were observed in patients undergoing otolaryngeal surgery and only minor fluctuations were observed for Aβ40 and Aβ42.Cardiac surgery is associated with neuronal injury, which is aggravated by extracorporeal circulation. Analyses of NFL and tau in blood may guide development of surgical procedures to minimize neuronal damage, and may also be used in longitudinal clinical studies to assess the relationship of surgery with future neurocognitive impairment or dementia.
  •  
11.
  • Cicognola, Claudia, et al. (author)
  • Novel tau fragments in cerebrospinal fluid : relation to tangle pathology and cognitive decline in Alzheimer’s disease
  • 2019
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 137:2, s. 279-296
  • Journal article (peer-reviewed)abstract
    • Tau is an axonal microtubule-binding protein. Tau pathology in brain and increased tau concentration in the cerebrospinal fluid (CSF) are hallmarks of Alzheimer’s disease (AD). Most of tau in CSF is present as fragments. We immunoprecipitated tau from CSF and identified several endogenous peptides ending at amino acid (aa) 123 or 224 using high-resolution mass spectrometry. We raised neo-epitope-specific antibodies against tau fragments specifically ending at aa 123 and 224, respectively. With these antibodies, we performed immunohistochemistry on brain tissue and designed immunoassays measuring N-123, N-224, and x-224 tau. Immunoassays were applied to soluble brain fractions from pathologically confirmed subjects (81 AD patients, 33 controls), CSF from three cross-sectional and two longitudinal cohorts (a total of 133 AD, 38 MCI, 20 MCI-AD, 31 PSP, 15 CBS patients, and 91 controls), and neuronally- and peripherally-derived extracellular vesicles (NDEVs and PDEVs, respectively) in serum from four AD patients and four controls. Anti-tau 224 antibody stained neurofibrillary tangles and neuropil threads, while anti-tau 123 only showed weak cytoplasmic staining in AD. N-224 tau was lower in the AD soluble brain fraction compared to controls, while N-123 tau showed similar levels. N-224 tau was higher in AD compared to controls in all CSF cohorts (p < 0.001), but not N-123 tau. Decrease in cognitive performance and conversion from MCI to AD were associated with increased baseline CSF levels of N-224 tau (p < 0.0001). N-224 tau concentrations in PSP and CBS were significantly lower than in AD (p < 0.0001) and did not correlate to t-tau and p-tau. In a longitudinal cohort, CSF N-224 tau levels were stable over 6 months, with no significant effect of treatment with AChE inhibitors. N-224 tau was present in NDEVs, while N-123 tau showed comparable concentrations in both vesicle types. We suggest that N-123 tau is produced both in CNS and PNS and represents a general marker of tau metabolism, while N-224 tau is neuron-specific, present in the tangles, secreted in CSF, and upregulated in AD, suggesting a link between tau cleavage and propagation, tangle pathology, and cognitive decline.
  •  
12.
  • Cullen, Nicholas C., et al. (author)
  • Accelerated inflammatory aging in Alzheimer’s disease and its relation to amyloid, tau, and cognition
  • 2021
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Journal article (peer-reviewed)abstract
    • It is unclear how pathological aging of the inflammatory system relates to Alzheimer’s disease (AD). We tested whether age-related inflammatory changes in cerebrospinal fluid (CSF) and plasma exist across different stages of AD, and whether such changes related to AD pathology. Linear regression was first used model chronological age in amyloid-β negative, cognitively unimpaired individuals (Aβ− CU; n = 312) based on a collection of 73 inflammatory proteins measured in both CSF and plasma. Fitted models were then applied on protein levels from Aβ+ individuals with mild cognitive impairment (Aβ+ MCI; n = 150) or Alzheimer’s disease dementia (Aβ+ AD; n = 139) to test whether the age predicted from proteins alone (“inflammatory age”) differed significantly from true chronological age. Aβ− individuals with subjective cognitive decline (Aβ− SCD; n = 125) or MCI (Aβ− MCI; n = 104) were used as an independent contrast group. The difference between inflammatory age and chronological age (InflammAGE score) was then assessed in relation to core AD biomarkers of amyloid, tau, and cognition. Both CSF and plasma inflammatory proteins were significantly associated with age in Aβ− CU individuals, with CSF-based proteins predicting chronological age better than plasma-based counterparts. Meanwhile, the Aβ− SCD and validation Aβ− CU groups were not characterized by significant inflammatory aging, while there was increased inflammatory aging in Aβ− MCI patients for CSF but not plasma inflammatory markers. Both CSF and plasma inflammatory changes were seen in the Aβ+ MCI and Aβ+ AD groups, with varying degrees of change compared to Aβ− CU and Aβ− SCD groups. Finally, CSF inflammatory changes were highly correlated with amyloid, tau, general neurodegeneration, and cognition, while plasma changes were mostly associated with amyloid and cognition. Inflammatory pathways change during aging and are specifically altered in AD, tracking closely with pathological hallmarks. These results have implications for tracking AD progression and for suggesting possible pathways for drug targeting.
  •  
13.
  • Cullen, Nicholas C., et al. (author)
  • Comparing progression biomarkers in clinical trials of early Alzheimer's disease
  • 2020
  • In: Annals of Clinical and Translational Neurology. - : Wiley. - 2328-9503. ; 7:9, s. 1661-1673
  • Journal article (peer-reviewed)abstract
    • Objective: To investigate the statistical power of plasma, imaging, and cognition biomarkers as Alzheimer's disease (AD) clinical trial outcome measures. Methods: Plasma neurofilament light, structural magnetic resonance imaging, and cognition were measured longitudinally in the Alzheimer's Disease Neuroimaging Initiative (ADNI) in control (amyloid PET or CSF A beta 42 negative [A beta-] with Clinical Dementia Rating scale [CDR] = 0; n = 330), preclinical AD (A beta + with CDR = 0; n = 218) and mild AD (A beta + with CDR = 0.5-1; n = 697) individuals. A statistical power analysis was performed across biomarkers and groups based on longitudinal mixed effects modeling and using several different clinical trial designs. Results: For a 30-month trial of preclinical AD, both the temporal composite and hippocampal volumes were superior to plasma neurofilament light and cognition. For an 18-month trial of mild AD, hippocampal volume was superior to all other biomarkers. Plasma neurofilament light became more effective with increased trial duration or sampling frequency. Imaging biomarkers were characterized by high slope and low within-subject variability, while plasma neurofilament light and cognition were characterized by higher within-subject variability. Interpretation: MRI measures had properties that made them preferable to cognition and pNFL as outcome measures in clinical trials of early AD, regardless of cognitive status. However, pNfL and cognition can still be effective depending on inclusion criteria, sampling frequency, and response to therapy. Future trials will help to understand how sensitive pNfL and MRI are to detect downstream effects on neurodegeneration of drugs targeting amyloid and tau pathology in AD.
  •  
14.
  • Cullen, Nicholas C., et al. (author)
  • Efficacy assessment of an active tau immunotherapy in Alzheimer's disease patients with amyloid and tau pathology : a post hoc analysis of the “ADAMANT” randomised, placebo-controlled, double-blind, multi-centre, phase 2 clinical trial
  • 2024
  • In: EBioMedicine. - 2352-3964. ; 99
  • Journal article (peer-reviewed)abstract
    • Background: Tau pathology correlates with and predicts clinical decline in Alzheimer's disease. Approved tau-targeted therapies are not available. Methods: ADAMANT, a 24-month randomised, placebo-controlled, parallel-group, double-blinded, multicenter, Phase 2 clinical trial (EudraCT2015-000630-30, NCT02579252) enrolled 196 participants with Alzheimer's disease; 119 are included in this post-hoc subgroup analysis. AADvac1, active immunotherapy against pathological tau protein. A machine learning model predicted likely Amyloid+Tau+ participants from baseline MRI. Statistical methods: MMRM for change from baseline in cognition, function, and neurodegeneration; linear regression for associations between antibody response and endpoints. Results: The prediction model achieved PPV of 97.7% for amyloid, 96.2% for tau. 119 participants in the full analysis set (70 treatment and 49 placebo) were classified as A+T+. A trend for CDR-SB 104-week change (estimated marginal means [emm] = −0.99 points, 95% CI [−2.13, 0.13], p = 0.0825]) and ADCS-MCI-ADL (emm = 3.82 points, CI [−0.29, 7.92], p = 0.0679) in favour of the treatment group was seen. Reduction was seen in plasma NF-L (emm = −0.15 log pg/mL, CI [−0.27, −0.03], p = 0.0139). Higher antibody response to AADvac1 was related to slowing of decline on CDR-SB (rho = −0.10, CI [−0.21, 0.01], p = 0.0376) and ADL (rho = 0.15, CI [0.03, 0.27], p = 0.0201), and related to slower brain atrophy (rho = 0.18–0.35, p < 0.05 for temporal volume, whole cortex, and right and left hippocampus). Conclusions: In the subgroup of ML imputed or CSF identified A+T+, AADvac1 slowed AD-related decline in an antibody-dependent manner. Larger anti-tau trials are warranted. Funding: AXON Neuroscience SE.
  •  
15.
  • Cullen, Nicholas C., et al. (author)
  • Plasma amyloid-β42/40 and apolipoprotein E for amyloid PET pre-screening in secondary prevention trials of Alzheimer's disease
  • 2023
  • In: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 5:2
  • Journal article (peer-reviewed)abstract
    • The extent to which newly developed blood-based biomarkers could reduce screening costs in secondary prevention trials of Alzheimer's disease is mostly unexplored. We collected plasma amyloid-β42/40, apolipoprotein E ϵ4 status and amyloid PET at baseline in 181 cognitively unimpaired participants [the age of 72.9 (5.3) years; 61.9% female; education of 11.9 (3.4) years] from the Swedish BioFINDER-1 study. We tested whether a model predicting amyloid PET status from plasma amyloid-β42/40, apolipoprotein E status and age (combined) reduced cost of recruiting amyloid PET + cognitively unimpaired participants into a theoretical trial. We found that the percentage of cognitively unimpaired participants with an amyloid PET + scan rose from 29% in an unscreened population to 64% [(49, 79); P < 0.0001] when using the biomarker model to screen for high risk for amyloid PET + status. In simulations, plasma screening also resulted in a 54% reduction of the total number of amyloid PET scans required and reduced total recruitment costs by 43% [(31, 56), P < 0.001] compared to no pre-screening when assuming a 16× PET-to-plasma cost ratio. Total savings remained significant when the PET-to-plasma cost ratio was assumed to be 8× or 4×. This suggests that a simple plasma biomarker model could lower recruitment costs in Alzheimer's trials requiring amyloid PET positivity for inclusion.
  •  
16.
  • Cullen, Nicholas C., et al. (author)
  • Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Plasma biomarkers of amyloid, tau, and neurodegeneration (ATN) need to be characterized in cognitively unimpaired (CU) elderly individuals. We therefore tested if plasma measurements of amyloid-β (Aβ)42/40, phospho-tau217 (P-tau217), and neurofilament light (NfL) together predict clinical deterioration in 435 CU individuals followed for an average of 4.8 ± 1.7 years in the BioFINDER study. A combination of all three plasma biomarkers and basic demographics best predicted change in cognition (Pre-Alzheimer’s Clinical Composite; R2 = 0.14, 95% CI [0.12–0.17]; P < 0.0001) and subsequent AD dementia (AUC = 0.82, 95% CI [0.77–0.91], P < 0.0001). In a simulated clinical trial, a screening algorithm combining all three plasma biomarkers would reduce the required sample size by 70% (95% CI [54–81]; P < 0.001) with cognition as trial endpoint, and by 63% (95% CI [53–70], P < 0.001) with subsequent AD dementia as trial endpoint. Plasma ATN biomarkers show usefulness in cognitively unimpaired populations and could make large clinical trials more feasible and cost-effective.
  •  
17.
  • Cullen, Nicholas C., et al. (author)
  • Test-retest variability of plasma biomarkers in Alzheimer's disease and its effects on clinical prediction models
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:3, s. 797-806
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION The effect of random error on the performance of blood-based biomarkers for Alzheimer's disease (AD) must be determined before clinical implementation. METHODS We measured test-retest variability of plasma amyloid beta (A beta)42/A beta 40, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and phosphorylated tau (p-tau)217 and simulated effects of this variability on biomarker performance when predicting either cerebrospinal fluid (CSF) A beta status or conversion to AD dementia in 399 non-demented participants with cognitive symptoms. RESULTS Clinical performance was highest when combining all biomarkers. Among single-biomarkers, p-tau217 performed best. Test-retest variability ranged from 4.1% (A beta 42/A beta 40) to 25% (GFAP). This variability reduced the performance of the biomarkers (approximate to Delta AUC [area under the curve] -1% to -4%) with the least effects on models with p-tau217. The percent of individuals with unstable predicted outcomes was lowest for the multi-biomarker combination (14%). DISCUSSION Clinical prediction models combining plasma biomarkers-particularly p-tau217-exhibit high performance and are less effected by random error. Individuals with unstable predicted outcomes ("gray zone") should be recommended for further tests.
  •  
18.
  • Kvartsberg, Hlin, 1987, et al. (author)
  • The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer's disease.
  • 2019
  • In: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 137:1, s. 89-102
  • Journal article (peer-reviewed)abstract
    • Synaptic degeneration and neuronal loss are early events in Alzheimer's disease (AD), occurring long before symptom onset, thus making synaptic biomarkers relevant for enabling early diagnosis. The postsynaptic protein neurogranin (Ng) is a cerebrospinal fluid (CSF) biomarker for AD, also in the prodromal phase. Here we tested the hypothesis that during AD neurodegeneration, processing of full-length Ng into endogenous peptides in the brain is increased. We characterized Ng in post-mortem brain tissue and investigated the levels of endogenous Ng peptides in relation to full-length protein in brain tissue of patients with sporadic (sAD) and familial Alzheimer's disease (fAD), healthy controls and individuals who were cognitively unaffected but amyloid-positive (CU-AP) in two different brain regions. Brain tissue from parietal cortex [sAD (n = 10) and age-matched controls (n = 10)] and temporal cortex [sAD (n=9), fAD (n=10), CU-AP (n=13) and controls (n=9)] were included and all the samples were analyzed by three different methods. Using high-resolution mass spectrometry, 39 endogenous Ng peptides were identified while full-length Ng was found to be modified including disulfide bridges or glutathione. In sAD parietal cortex, the ratio of peptide-to-total full-length Ng was significantly increased for eight endogenous Ng peptides compared to controls. In the temporal cortex, several of the peptide-to-total full-length Ng ratios were increased in both sAD and fAD cases compared to controls and CU-AP. This finding was confirmed by western blot, which mainly detects full-length Ng, and enzyme-linked immunosorbent assay, most likely detecting a mix of peptides and full-length Ng. In addition, Ng was significantly associated with the degree of amyloid and tau pathology. These results suggest that processing of Ng into peptides is increased in AD brain tissue, which may reflect the ongoing synaptic degeneration, and which is also mirrored as increased levels of Ng peptides in CSF.
  •  
19.
  • Leuzy, Antoine, et al. (author)
  • Biomarker-Based Prediction of Longitudinal Tau Positron Emission Tomography in Alzheimer Disease
  • 2022
  • In: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 79:2, s. 149-158
  • Journal article (peer-reviewed)abstract
    • Importance: There is currently no consensus as to which biomarkers best predict longitudinal tau accumulation at different clinical stages of Alzheimer disease (AD). Objective: To describe longitudinal [18F]RO948 tau positron emission tomography (PET) findings across the clinical continuum of AD and determine which biomarker combinations showed the strongest associations with longitudinal tau PET and best optimized clinical trial enrichment. Design, Setting, and Participants: This longitudinal cohort study consecutively enrolled amyloid-β (Aβ)-negative cognitively unimpaired (CU) participants, Aβ-positive CU individuals, Aβ-positive individuals with mild cognitive impairment (MCI), and individuals with AD dementia between September 2017 and November 2020 from the Swedish BioFINDER-2 (discovery cohort) and BioFINDER-1 (validation cohort) studies. Exposures: Baseline plasma and cerebrospinal fluid Aβ42/Aβ40, tau phosphorylated at threonine-217 (p-tau217), p-tau181 and neurofilament light, magnetic resonance imaging, amyloid PET ([18F]flutemetamol), and tau PET ([18F]RO948 in the BioFINDER-2 study; [18F]flortaucipir in the BioFINDER-1 study). Main Outcomes and Measures: Baseline tau PET standardized uptake value ratio (SUVR) and annual percent change in tau PET SUVR across regions of interest derived using a data-driven approach combining clustering and event-based modeling. Regression models were used to examine associations between individual biomarkers and longitudinal tau PET and to identify which combinations best predicted longitudinal tau PET. These combinations were then entered in a power analysis to examine how their use as an enrichment strategy would affect sample size in a simulated clinical trial. Results: Of 343 participants, the mean (SD) age was 72.56 (7.24) years, and 157 (51.1%) were female. The clustering/event-based modeling-based approach identified 5 regions of interest (stages). In Aβ-positive CU individuals, the largest annual increase in tau PET SUVR was seen in stage I (entorhinal cortex, hippocampus, and amygdala; 4.04% [95% CI, 2.67%-5.32%]). In Aβ-positive individuals with MCI and with AD dementia, the greatest increases were seen in stages II (temporal cortical regions; 4.45% [95% CI, 3.41%-5.49%]) and IV (certain frontal regions; 5.22% [95% CI, 3.95%-6.49%]), respectively. In Aβ-negative CU individuals and those with MCI, modest change was seen in stage I (1.38% [95% CI, 0.78%-1.99%] and 1.80% [95% CI, 0.76%-2.84%], respectively). When looking at individual predictors and longitudinal tau PET in the stages that showed most change, plasma p-tau217 (R2= 0.27, P <.005), tau PET (stage I baseline SUVR; R2= 0.13, P <.05) and amyloid PET (R2= 0.10, P <.05) were significantly associated with longitudinal tau PET in stage I in Aβ-positive CU individuals. In Aβ-positive individuals with MCI, plasma p-tau217 (R2= 0.24, P <.005) and tau PET (stage II baseline SUVR; R2= 0.44, P <.001) were significantly associated with longitudinal tau PET in stage II. Findings were replicated in BioFINDER-1 using longitudinal [18F]flortaucipir. For the power analysis component, plasma p-tau217 with tau PET resulted in sample size reductions of 43% (95% CI, 34%-46%; P <.005) in Aβ-positive CU individuals and of 68% (95% CI, 61%-73%; P <.001) in Aβ-positive individuals with MCI. Conclusions and Relevance: In trials using tau PET as the outcome, plasma p-tau217 with tau PET may prove optimal for enrichment in preclinical and prodromal AD. However, plasma p-tau217 was most important in preclinical AD, while tau PET was more important in prodromal AD..
  •  
20.
  • Leuzy, Antoine, et al. (author)
  • Current advances in plasma and cerebrospinal fluid biomarkers in Alzheimer's disease
  • 2021
  • In: Current Opinion in Neurology. - 1473-6551. ; 34:2, s. 266-274
  • Journal article (peer-reviewed)abstract
    • PURPOSE OF REVIEW: This review provides a concise overview of recent advances in cerebrospinal fluid (CSF) and blood-based biomarkers of Alzheimer's disease lesions. RECENT FINDINGS: Important recent advances for CSF Alzheimer's disease biomarkers include the introduction of fully automated assays, the development and implementation of certified reference materials for CSF Aβ42 and a unified protocol for handling of samples, which all support reliability and availability of CSF Alzheimer's disease biomarkers. Aβ deposition can be detected using Aβ42/Aβ40 ratio in both CSF and plasma, though a much more modest change is seen in plasma. Tau aggregation can be detected using phosphorylated tau (P-tau) at threonine 181 and 217 in CSF, with similar accuracy in plasma. Neurofilament light (NfL) be measured in CSF and shows similar diagnostic accuracy in plasma. Though total tau (T-tau) can also be measured in plasma, this measure is of limited clinical relevance for Alzheimer's disease in its current immunoassay format. SUMMARY: Alzheimer's disease biomarkers, including Aβ, P-tau and NfL can now be reliably measured in both CSF and blood. Plasma-based measures of P-tau show particular promise, with potential applications in both clinical practice and in clinical trials.
  •  
21.
  • Leuzy, Antoine, et al. (author)
  • Robustness of CSF Aβ42/40 and Aβ42/P-tau181 measured using fully automated immunoassays to detect AD-related outcomes
  • 2023
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:7, s. 2994-3004
  • Journal article (peer-reviewed)abstract
    • Introduction: This study investigated the comparability of cerebrospinal fluid (CSF) cutoffs for Elecsys immunoassays for amyloid beta (Aβ)42/Aβ40 or Aβ42/phosphorylated tau (p-tau)181 and the effects of measurement variability when predicting Alzheimer's disease (AD)-related outcomes (i.e., Aβ-positron emission tomography [PET] visual read and AD neuropathology). Methods: We studied 750 participants (BioFINDER study, Alzheimer's Disease Neuroimaging Initiative [ADNI], and University of California San Francisco [UCSF]). Youden's index was used to identify cutoffs and to calculate accuracy (Aβ-PET visual read as outcome). Using longitudinal variability in Aβ-negative controls, we identified a gray zone around cut-points where the risk of an inconsistent predicted outcome was >5%. Results: For Aβ42/Aβ40, cutoffs across cohorts were <0.059 (BioFINDER), <0.057 (ADNI), and <0.058 (UCSF). For Aβ42/p-tau181, cutoffs were <41.90 (BioFINDER), <39.20 (ADNI), and <46.02 (UCSF). Accuracy was ≈90% for both Aβ42/Aβ40 and Aβ42/p-tau181 using these cutoffs. Using Aβ-PET as an outcome, 8.7% of participants fell within a gray zone interval for Aβ42/Aβ40, compared to 4.5% for Aβ42/p-tau181. Similar findings were observed using a measure of overall AD neuropathologic change (7.7% vs. 3.3%). In a subset with CSF and plasma Aβ42/40, the number of individuals within the gray zone was ≈1.5 to 3 times greater when using plasma Aβ42/40. Discussion: CSF Aβ42/p-tau181 was more robust to the effects of measurement variability, suggesting that it may be the preferred Elecsys-based measure in clinical practice and trials.
  •  
22.
  • Mattsson, Niklas, et al. (author)
  • Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease
  • 2019
  • In: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 76:7, s. 791-799
  • Journal article (peer-reviewed)abstract
    • IMPORTANCE Plasma neurofilament light (NfL) has been suggested as a noninvasive biomarker to monitor neurodegeneration in Alzheimer disease (AD), but studies are lacking. OBJECTIVE To examine whether longitudinal plasma NfL levels are associated with other hallmarks of AD. DESIGN, SETTING, AND PARTICIPANTS This North American cohort study used data from 1583 individuals in the multicenter Alzheimer's Disease Neuroimaging Initiative study from September 7, 2005, through June 16, 2016. Patients were eligible for inclusion if they had NfL measurements. Annual plasma NfL samples were collected for up to 11 years and were analyzed in 2018. EXPOSURES Clinical diagnosis, A beta and tau cerebrospinal fluid (CSF) biomarkers, imaging measures (magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography), and tests on cognitive scores. MAIN OUTCOMES AND MEASURES The primary outcome was the association between baseline exposures (diagnosis, CSF biomarkers, imaging measures, and cognition) and longitudinal plasma NfL levels, analyzed by an ultrasensitive assay. The secondary outcomes were the associations between a multimodal classification scheme with A beta, tau, and neurodegeneration (ie, the ATN system) and plasma NfL levels and between longitudinal changes in plasma NfL levels and changes in the other measures. RESULTS Of the included 1583 participants, 716 (45.2%) were women, and the mean (SD) age was 72.9 (7.1) years; 401 had no cognitive impairment, 855 had mild cognitive impairment, and 327 had AD dementia. The NfL level was increased at baseline in patients with mild cognitive impairment and AD dementia (mean levels: cognitive unimpairment, 32.1 ng/L; mild cognitive impairment, 37.9 ng/L; and AD dementia, 45.9 ng/L; P<.001) and increased in all diagnostic groups, with the greatest increase in patients with AD dementia. A longitudinal increase in NfL level correlated with baseline CSF biomarkers (low A beta 42 [P=.001], high total tau [P=.02], and high phosphorylated tau levels [P=.02]), magnetic resonance imaging measures (small hippocampal volumes [P<.001], thin regional cortices [P=.009], and large ventricular volumes [P=.002]), low fluorodeoxyglucose-positron emission tomography uptake (P=.01), and poor cognitive performance (P<.001) for a global cognitive score. With use of the ATN system, increased baseline NfL levels were seen in A-T+N+ (P<.001), A+T-N+ (P<.001), and A+T+N+ (P<.001), and increased rates of NfL levels were seen in A-T+N- (P=.009), A-T+N+ (P=.02), A+T-N+ (P=.04), and A+T+N+ (P=.002). Faster increase in NfL levels correlated with faster increase in CSF biomarkers of neuronal injury, faster rates of atrophy and hypometabolism, and faster worsening in global cognition (all P<.05 in patients with mild cognitive impairment; associations differed slightly in cognitively unimpaired controls and patients with AD dementia). CONCLUSIONS AND RELEVANCE The findings suggest that plasma NfL can be used as a noninvasive biomarker associated with neurodegeneration in patients with AD and may be useful to monitor effects in trials of disease-modifying drugs.
  •  
23.
  • Olsson, B, et al. (author)
  • Association of Cerebrospinal Fluid Neurofilament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders.
  • 2019
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 76:3, s. 318-325
  • Journal article (peer-reviewed)abstract
    • Neuronal and axonal destruction are hallmarks of neurodegenerative diseases, but it is difficult to estimate the extent and progress of the damage in the disease process.To investigate cerebrospinal fluid (CSF) levels of neurofilament light (NFL) protein, a marker of neuroaxonal degeneration, in control participants and patients with dementia, motor neuron disease, and parkinsonian disorders (determined by clinical criteria and autopsy), and determine its association with longitudinal cognitive decline.In this case-control study, we investigated NFL levels in CSF obtained from controls and patients with several neurodegenerative diseases. Collection of samples occurred between 1996 and 2014, patients were followed up longitudinally for cognitive testing, and a portion were autopsied in a single center (University of Pennsylvania). Data were analyzed throughout 2016.Concentrations of NFL in CSF.Levels of CSF NFL and correlations with cognition scores.A total of 913 participants (mean [SD] age, 68.7 [10.0] years; 456 [49.9%] women) were included: 75 control participants plus 114 patients with mild cognitive impairment (MCI), 397 with Alzheimer disease, 96 with frontotemporal dementia, 68 with amyotrophic lateral sclerosis, 41 with Parkinson disease (PD), 19 with PD with MCI, 29 with PD dementia, 33 with dementia with Lewy bodies, 21 with corticobasal syndrome, and 20 with progressive supranuclear palsy. Cognitive testing follow-up occurred for 1 to 18 years (mean [SD], 0.98 [2.25] years); autopsy-verified diagnoses were available for 120 of 845 participants with diseases (14.2%). There was a stepwise increase in CSF NFL levels between control participants (median [range] score, 536 [398-777] pg/mL), participants with MCI (831 [526-1075] pg/mL), and those with Alzheimer disease (951 [758-1261] pg/mL), indicating that NFL levels increase with increasing cognitive impairment. Levels of NFL correlated inversely with baseline Mini-Mental State Examination scores (ρ, -0.19; P<.001) in the full cohort (n=822) and annual score decline in the full cohort (ρ, 0.36, P<.001), participants with AD (ρ, 0.25; P<.001), and participants with FTD (ρ, 0.46; P=.003). Concentrations of NFL were highest in participants with amyotrophic lateral sclerosis (median [range], 4185 [2207-7453] pg/mL) and frontotemporal dementia (2094 [230-7744] pg/mL). In individuals with parkinsonian disorders, NFL concentrations were highest in those with progressive supranuclear palsy (median [range], 1578 [1287-3104] pg/mL) and corticobasal degeneration (1281 [828-2713] pg/mL). The NFL concentrations in CSF correlated with TDP-43 load in 13 of 17 brain regions in the full cohort. Adding NFL to β-amyloid 42, total tau, and phosphorylated tau increased accuracy of discrimination of diseases.Levels of CSF NFL are associated with cognitive impairments in patients with Alzheimer disease and frontotemporal dementia. In other neurodegenerative disorders, NFL levels appear to reflect the intensity of the neurodegenerative processes.
  •  
24.
  • Olsson, Bob, 1969, et al. (author)
  • NFL is a marker of treatment response in children with SMA treated with nusinersen
  • 2019
  • In: Journal of Neurology. - : Springer Science and Business Media LLC. - 0340-5354 .- 1432-1459. ; 266:9, s. 2129-2136
  • Journal article (peer-reviewed)abstract
    • Background Recently, the anti-sense oligonucleotide drug nusinersen was approved for spinal muscular atrophy (SMA) and our aim was to find a response marker for this treatment. Methods Twelve children with SMA type 1 and two copies of the SMN2 gene were included in a consecutive single-center study. The children were sampled for CSF at baseline and every time nusinersen was given intrathecally. The neuronal biomarkers NFL and tau and the glial biomarker GFAP were measured. Motor function was assessed using CHOP INTEND. Eleven similarly aged children, who were investigated to rule out neurological or infectious disease, were used as controls. Results Baseline levels of NFL (4598 +/- 981 vs 148 +/- 39, P = 0.001), tau (939 +/- 159 vs 404 +/- 86, P = 0.02), and GFAP (236 +/- 44 vs 108 +/- 26, P = 0.02) were significantly higher in SMA children than controls. Motor function improved by nusinersen treatment in median 13 points corresponding to 5.4 points per month of treatment (P = 0.001). NFL levels typically normalized ( < 380 pg/ml) between the fourth and fifth doses [- 879.5 pg/mL/dose, 95% CI (- 1243.4, - 415.6), P = 0.0001], tau levels decreased [- 112.6 pg/mL/dose, 95% CI (- 206-7, - 18.6), P = 0.01], and minor decreases in GFAP were observed [- 16.9 pg/mL/dose, 95% CI (- 22.8, - 11.2), P = 0.02] by nusinersen treatment. Improvement in motor function correlated with reduced concentrations of NFL (rho = - 0.64, P = 0.03) and tau (rho = - 0.85, P = 0.0008) but not GFAP. Conclusions Nusinersen normalized the axonal damage marker NFL and correlated with motor improvement in children with SMA. NFL may, therefore, be a novel biomarker to monitor treatment response early in the disease course.
  •  
25.
  • Palmqvist, Sebastian, et al. (author)
  • An accurate fully automated panel of plasma biomarkers for Alzheimer's disease
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:4, s. 1204-1215
  • Journal article (peer-reviewed)abstract
    • Introduction There is a great need for fully automated plasma assays that can measure amyloid beta (A beta) pathology and predict future Alzheimer's disease (AD) dementia. Methods Two cohorts (n = 920) were examined: Panel A+ (n = 32 cognitively unimpaired [CU], n = 106 mild cognitive impairment [MCI], and n = 89 AD) and BioFINDER-1 (n = 461 CU, n = 232 MCI). Plasma A beta 42/A beta 40, phosphorylated tau (p-tau)181, two p-tau217 variants, ApoE4 protein, neurofilament light, and GFAP were measured using Elecsys prototype immunoassays. Results The best biomarker for discriminating A beta-positive versus A beta-negative participants was A beta 42/A beta 40 (are under the curve [AUC] 0.83-0.87). Combining A beta 42/A beta 40, p-tau181, and ApoE4 improved the AUCs significantly (0.90 to 0.93; P< 0.01). Adding additional biomarkers had marginal effects (Delta AUC <= 0.01). In BioFINDER, p-tau181, p-tau217, and ApoE4 predicted AD dementia within 6 years in CU (AUC 0.88) and p-tau181, p-tau217, and A beta 42/A beta 40 in MCI (AUC 0.87). Discussion The high accuracies for A beta pathology and future AD dementia using fully automated instruments are promising for implementing plasma biomarkers in clinical trials and clinical routine.
  •  
26.
  • Portelius, Erik, 1977, et al. (author)
  • Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology.
  • 2018
  • In: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 136:3, s. 363-376
  • Journal article (peer-reviewed)abstract
    • Neurogranin (Ng) is a post-synaptic protein that previously has been shown to be a biomarker for synaptic function when measured in cerebrospinal fluid (CSF). The CSF concentration of Ng is increased in Alzheimer's disease dementia (ADD),and even in the pre-dementia stage. In this prospective study, we used an enzyme-linked immunosorbent assay that quantifies Ng in CSF to test the performance of Ng as a marker of synaptic function. In 915 patients, CSF Ng was evaluated across several different neurodegenerative diseases. Of these 915 patients, 116 had a neuropathologically confirmed definitive diagnosis and the relation between CSF Ng and topographical distribution of different pathologies in the brain was evaluated. CSF Ng was specifically increased in ADD compared to eight other neurodegenerative diseases, including Parkinson's disease (p<0.0001), frontotemporal dementia (p<0.0001), and amyotrophic lateral sclerosis (p=0.0002). Similar results were obtained in neuropathologically confirmed cases. Using a biomarker index to evaluate whether CSF Ng contributed diagnostic information to the core AD CSF biomarkers (amyloid β (Aβ), t-tau, and p-tau), we show that Ng significantly increased the discrimination between AD and several other disorders. Higher CSF Ng levels were positively associated with greater Aβ neuritic plaque (Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuritic plaque score, p=0.0002) and tau tangle pathology (Braak neurofibrillary tangles staging, p=0.0007) scores. In the hippocampus and amygdala, two brain regions heavily affected in ADD with high expression of Ng, CSF Ng was associated with plaque (p=0.0006 and p<0.0001), but not with tangle, α-synuclein, or TAR DNA-binding protein 43 loads. These data support that CSF Ng is increased specifically in ADD, that high CSF Ng concentrations likely reflect synaptic dysfunction and that CSF Ng is associated with β-amyloid plaque pathology.
  •  
27.
  • Sandelius, Anna Stina, 1952, et al. (author)
  • Transient increase in CSF GAP-43 concentration after ischemic stroke.
  • 2018
  • In: BMC neurology. - : Springer Science and Business Media LLC. - 1471-2377. ; 18:1
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) biomarkers reflect ongoing processes in the brain. Growth-associated protein 43 (GAP-43) is highly upregulated in brain tissue shortly after experimental ischemia suggesting the CSF GAP-43 concentration may be altered in ischemic brain disorders. CSF GAP-43 concentration is elevated in Alzheimer's disease patients; however, patients suffering from stroke have not been studied previously.The concentration of GAP-43 was measured in longitudinal CSF samples from 28 stroke patients prospectively collected on days 0-1, 2-4, 7-9, 3weeks, and 3-5months after ischemia and cross-sectionally in 19 controls. The stroke patients were clinically evaluated using a stroke severity score system. The extent of the brain lesion, including injury size and degrees of white matter lesions and atrophy were evaluated by CT and magnetic resonance imaging.Increased GAP-43 concentration was detected from day 7-9 to 3weeks after stroke, compared to day 1-4 and to levels in the control group (P=0.02 and P=0.007). At 3-5months after stroke GAP-43 returned to admission levels. The initial increase in GAP-43 during the nine first days was associated to stroke severity, the degree of white matter lesions and atrophy and correlated positively with infarct size (rs=0.65, P=0.001).The transient increase of CSF GAP-43 is important to take into account when used as a biomarker for other neurodegenerative diseases such as Alzheimer's disease. Furthermore, GAP-43 may be a marker of neuronal responses after stroke and additional studies confirming the potential of CSF GAP-43 to reflect severity and outcome of stroke in larger cohorts are warranted.
  •  
28.
  • Smith, Ruben, et al. (author)
  • Tau-PET is superior to phospho-tau when predicting cognitive decline in symptomatic AD patients
  • 2023
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:6, s. 2497-2507
  • Journal article (peer-reviewed)abstract
    • Introduction: Biomarkers for the prediction of cognitive decline in patients with amnestic mild cognitive impairment (MCI) and amnestic mild dementia are needed for both clinical practice and clinical trials. Methods: We evaluated the ability of tau-PET (positron emission tomography), cortical atrophy on magnetic resonance imaging (MRI), baseline cognition, apolipoprotein E gene (APOE) status, plasma and cerebrospinal fluid (CSF) levels of phosphorylated tau-217, neurofilament light (NfL), and amyloid beta (Aβ)42/40 ratio (individually and in combination) to predict cognitive decline over 2 years in BioFINDER-2 and Alzheimer's Disease Neuroimaging Initiative (ADNI). Results: Baseline tau-PET and a composite baseline cognitive score were the strongest independent predictors of cognitive decline. Cortical thickness and NfL provided some additional information. Using a predictive algorithm to enrich patient selection in a theoretical clinical trial led to a significantly lower required sample size. Discussion: Models including baseline tau-PET and cognition consistently provided the best prediction of change in cognitive function over 2 years in patients with amnestic MCI or mild dementia.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-28 of 28
Type of publication
journal article (27)
research review (1)
Type of content
peer-reviewed (27)
other academic/artistic (1)
Author/Editor
Blennow, Kaj, 1958 (13)
Zetterberg, Henrik, ... (12)
Brinkmalm, Gunnar (2)
Davies, Gareth (1)
Khaw, Kay-Tee (1)
Riboli, Elio (1)
show more...
Wang, Jin (1)
Wang, Mei (1)
Rosengren, Lars, 195 ... (1)
Strålfors, Peter (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Wolk, Alicja (1)
Stevenson, J (1)
Bonaldo, Paolo (1)
Donovan, Jenny L (1)
Hamdy, Freddie C (1)
Neal, David E (1)
Eeles, Rosalind A (1)
Haiman, Christopher ... (1)
Kote-Jarai, Zsofia (1)
Schumacher, Fredrick ... (1)
Benlloch, Sara (1)
Muir, Kenneth (1)
Berndt, Sonja I (1)
Conti, David V (1)
Wiklund, Fredrik (1)
Chanock, Stephen J (1)
Gapstur, Susan M (1)
Stevens, Victoria L (1)
Tangen, Catherine M (1)
Batra, Jyotsna (1)
Clements, Judith A (1)
Pashayan, Nora (1)
Schleutker, Johanna (1)
Albanes, Demetrius (1)
West, Catharine M L (1)
Mucci, Lorelei A (1)
Cancel-Tassin, Geral ... (1)
Koutros, Stella (1)
Maehle, Lovise (1)
Travis, Ruth C (1)
Rosenstein, Barry S (1)
Lu, Yong-Jie (1)
Giles, Graham G (1)
Kibel, Adam S (1)
Vega, Ana (1)
Kogevinas, Manolis (1)
Penney, Kathryn L (1)
Park, Jong Y (1)
show less...
University
Lund University (19)
University of Gothenburg (17)
Karolinska Institutet (7)
Uppsala University (2)
Luleå University of Technology (1)
Linköping University (1)
show more...
Swedish University of Agricultural Sciences (1)
show less...
Language
English (28)
Research subject (UKÄ/SCB)
Medical and Health Sciences (26)
Natural sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view