SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Elbeltagi Ahmed) "

Search: WFRF:(Elbeltagi Ahmed)

  • Result 1-10 of 36
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Awad, Ahmed, et al. (author)
  • Farmers’ Awareness in the Context of Climate Change : An Underutilized Way for Ensuring Sustainable Farmland Adaptation and Surface Water Quality
  • 2021
  • In: Sustainability. - : MDPI. - 2071-1050. ; 13:21
  • Journal article (peer-reviewed)abstract
    • Simulations using the Crop Water and Irrigation Requirements model (CROPWAT), show that the projected climatic changes over the period from 2026 to 2050 in the Yanyun irrigation district, Yangzhou, China, will cause the paddy lands there to lose about 12.4% to 37.4%, and 1.6% to 45.6%, of their future seasonal rainwater in runoff under the Representative Concentration Pathways (RCP45 and RCP85), respectively. This may increase future irrigation requirements (IRs), alongside threatening the quality of adjacent water bodies. The CROPWAT simulations were re-run after increasing the Surface Storage Capacity (SSC) of the land by 50% and 100% of its baseline value. The results state that future rainwater runoff will be reduced by up to 76% and 100%, and 53% and 100% when the SSC is increased by 50% and 100%, under RCP45 and RCP85, respectively. This mitigates the future increase in IRs (e.g., under RCP45, up to about 11% and 16% of future IRs will be saved when increasing the SSC by 50% and 100%, respectively), thus saving the adjacent water bodies from the contaminated runoff from these lands. Adjusting the SSC of farmlands is an easy physical approach that can be practiced by farmers, and therefore educating them on how to follow up the rainfall forecast and then adjust the level of their farmlands’ boundaries according to these forecasts may help in the self-adaptation of vast areas of farmlands to climate change. These findings will help water users conserve agricultural water resources (by mitigating the future increase in IRs) alongside ensuring better quality for adjacent water bodies (by decreasing future runoff from these farmlands). Increasing farmers’ awareness, an underutilized approach, is a potential tool for ensuring improved agricultural circumstances amid projected climate changes and preserving the available water resources.
  •  
2.
  • Zerouali, Bilel, et al. (author)
  • Improving the visualization of rainfall trends using various innovative trend methodologies with time–frequency-based methods
  • 2022
  • In: Applied water science. - : Springer Nature. - 2190-5487 .- 2190-5495. ; 12:9
  • Journal article (peer-reviewed)abstract
    • In this paper, the Innovative Trend Methodology (ITM) and their inspired approaches, i.e., Double (D-ITM) and Triple (T-ITM), were combined with Hilbert Huang transform (HHT) time frequency-based method. The new hybrid methods (i.e., ITM-HHT, D-ITM-HHT, and T-ITM-HHT) were proposed and compared to the DWT-based methods in order to recommend the best method. Three total annual rainfall time series from 1920 to 2011 were selected from three hydrological basins in Northern Algeria. The new combined models (ITM-HHT, D-ITM-HHT, and T-ITM-HHT) revealed that the 1950–1975 period has significant wet episodes followed by a long-term drought observed in the western region of Northern Algeria, while Northeastern Algeria presented a wet period since 2001. The proposed approaches successfully detected, in a visible manner, hidden trends presented in the signals, which proves that the removal of some modes of variability from the original rainfall signals can increase the accuracy of the used approaches. © 2022, The Author(s).
  •  
3.
  • Abdel-Hameed, Amal Mohamed, et al. (author)
  • Estimation of Potato Water Footprint Using Machine Learning Algorithm Models in Arid Regions
  • 2024
  • In: Potato Research. - : Springer Nature. - 0014-3065 .- 1871-4528.
  • Journal article (peer-reviewed)abstract
    • Precise assessment of water footprint to improve the water consumption and crop yield for irrigated agricultural efficiency is required in order to achieve water management sustainability. Although Penman-Monteith is more successful than other methods and it is the most frequently used technique to calculate water footprint, however, it requires a significant number of meteorological parameters at different spatio-temporal scales, which are sometimes inaccessible in many of the developing countries such as Egypt. Machine learning models are widely used to represent complicated phenomena because of their high performance in the non-linear relations of inputs and outputs. Therefore, the objectives of this research were to (1) develop and compare four machine learning models: support vector regression (SVR), random forest (RF), extreme gradient boost (XGB), and artificial neural network (ANN) over three potato governorates (Al-Gharbia, Al-Dakahlia, and Al-Beheira) in the Nile Delta of Egypt and (2) select the best model in the best combination of climate input variables. The available variables used for this study were maximum temperature (Tmax), minimum temperature (Tmin), average temperature (Tave), wind speed (WS), relative humidity (RH), precipitation (P), vapor pressure deficit (VPD), solar radiation (SR), sown area (SA), and crop coefficient (Kc) to predict the potato blue water footprint (BWF) during 1990–2016. Six scenarios (Sc1–Sc6) of input variables were used to test the weight of each variable in four applied models. The results demonstrated that Sc5 with the XGB and ANN model gave the most promising results to predict BWF in this arid region based on vapor pressure deficit, precipitation, solar radiation, crop coefficient data, followed by Sc1. The created models produced comparatively superior outcomes and can contribute to the decision-making process for water management and development planners. 
  •  
4.
  • Alsafadi, Karam, et al. (author)
  • An evapotranspiration deficit-based drought index to detect variability of terrestrial carbon productivity in the Middle East
  • 2022
  • In: Environmental Research Letters. - UK : Institute of Physics Publishing (IOPP). - 1748-9326. ; 17:1
  • Journal article (peer-reviewed)abstract
    • The primary driver of the land carbon sink is gross primary productivity (GPP), the gross absorption of carbon dioxide (CO2) by plant photosynthesis, which currently accounts for about one-quarter of anthropogenic CO2 emissions per year. This study aimed to detect the variability of carbon productivity using the standardized evapotranspiration deficit index (SEDI). Sixteen countries in the Middle East (ME) were selected to investigate drought. To this end, the yearly GPP dataset for the study area, spanning the 35 years (1982–2017) was used. Additionally, the Global Land Evaporation Amsterdam Model (GLEAM, version 3.3a), which estimates the various components of terrestrial evapotranspiration (annual actual and potential evaporation), was used for the same period. The main findings indicated that productivity in croplands and grasslands was more sensitive to the SEDI in Syria, Iraq, and Turkey by 34%, 30.5%, and 29.6% of cropland area respectively, and 25%, 31.5%, and 30.5% of grass land area. A significant positive correlation against the long-term data of the SEDI was recorded. Notably, the GPP recorded a decline of >60% during the 2008 extreme drought in the north of Iraq and the northeast of Syria, which concentrated within the agrarian ecosystem and reached a total vegetation deficit with 100% negative anomalies. The reductions of the annual GPP and anomalies from 2009 to 2012 might have resulted from the decrease in the annual SEDI at the peak 2008 extreme drought event. Ultimately, this led to a long delay in restoring the ecosystem in terms of its vegetation cover. Thus, the proposed study reported that the SEDI is more capable of capturing the GPP variability and closely linked to drought than commonly used indices. Therefore, understanding the response of ecosystem productivity to drought can facilitate the simulation of ecosystem changes under climate change projections.
  •  
5.
  • Amjad, Muhammad Raiees, et al. (author)
  • Carbonate Reservoir Quality Variations in Basins with a Variable Sediment Influx: A Case Study from the Balkassar Oil Field, Potwar, Pakistan
  • 2023
  • In: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 8:4, s. 4127-4145
  • Journal article (peer-reviewed)abstract
    • The carbonate reservoir quality is strongly reliant on the compaction process during sediment burial and other processes such as cementation and dissolution. Porosity and pore pressure are the two main factors directly affected by mechanical and chemical compactions. Porosity reduction in these carbonates is critically dependent on the overburden stress and subsidence rate. A variable sediment influx in younger basins may lead to changes in the reservoir quality in response to increasing lithostatic pressure. Deposition of molasse sediments as a result of the Himalayan orogeny caused variations in the sedimentation influx in the Potwar Basin of Pakistan throughout the Neogene times. The basic idea of this study is to analyze the carbonate reservoir quality variations induced by the compaction and variable sediment influx. The Sakesar Limestone of the Eocene age, one of the proven carbonate reservoirs in the Potwar Basin, shows significant changes in the reservoir quality, specifically in terms of porosity and pressure. A 3D seismic cube (10 km2) and three wells of the Balkassar field are used for this analysis. To determine the vertical and lateral changes of porosity in the Balkassar area, porosity is computed from both the log and seismic data. The results of both the data sets indicate 2–4% porosities in the Sakesar Limestone. The porosity reduction rate with respect to the lithostatic pressure computed with the help of geohistory analysis represents a sharp decrease in porosity values during the Miocene times. Pore pressure predictions in the Balkassar OXY 01 well indicate underpressure conditions in the Sakesar Limestone. The Eocene limestones deposited before the collision of the Indian plate had enough time for fluid expulsion and show underpressure conditions with high porosities. 
  •  
6.
  • Ashraf, Imtiaz, et al. (author)
  • Nanoarchitectonics and Kinetics Insights into Fluoride Removal from Drinking Water Using Magnetic Tea Biochar
  • 2022
  • In: International Journal of Environmental Research and Public Health. - : MDPI. - 1661-7827 .- 1660-4601. ; 19:20
  • Journal article (peer-reviewed)abstract
    • Fluoride contamination in water is a key problem facing the world, leading to health problems such as dental and skeletal fluorosis. So, we used low-cost multifunctional tea biochar (TBC) and magnetic tea biochar (MTBC) prepared by facile one-step pyrolysis of waste tea leaves. The TBC and MTBC were characterized by XRD, SEM, FTIR, and VSM. Both TBC and MTBC contain high carbon contents of 63.45 and 63.75%, respectively. The surface area of MTBC (115.65 m2/g) was higher than TBC (81.64 m2/g). The modified biochar MTBC was further used to remediate the fluoride-contaminated water. The fluoride adsorption testing was conducted using the batch method at 298, 308, and 318 K. The maximum fluoride removal efficiency (E%) using MTBC was 98% when the adsorbent dosage was 0.5 g/L and the fluoride concentration was 50 mg/L. The experiment data for fluoride adsorption on MTBC best fit the pseudo 2nd order, rather than the pseudo 1st order. In addition, the intraparticle diffusion model predicts the boundary diffusion. Langmuir, Freundlich, Temkin, and Dubnin–Radushkevich isotherm models were fitted to explain the fluoride adsorption on MTBC. The Langmuir adsorption capacity of MTBC = 18.78 mg/g was recorded at 298 K and decreased as the temperature increased. The MTBC biochar was reused in ten cycles, and the E% was still 85%. The obtained biochar with a large pore size and high removal efficiency may be an effective and low-cost adsorbent for treating fluoride-containing water.
  •  
7.
  • Baghel, Shreeya, et al. (author)
  • Delineation of suitable sites for groundwater recharge based on groundwater potential with RS, GIS, and AHP approach for Mand catchment of Mahanadi Basin
  • 2023
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Groundwater management requires a systematic approach since it is crucial to the long-term viability of livelihoods and regional economies all over the world. There is insufficient groundwater management and difficulties in storage plans as a result of increased population, fast urbanisation, and climate change, as well as unpredictability in rainfall frequency and intensity. Groundwater exploration using remote sensing (RS) data and geographic information system (GIS) has become a breakthrough in groundwater research, assisting in the assessment, monitoring, and conservation of groundwater resources. The study region is the Mand catchment of the Mahanadi basin, covering 5332.07 km2 and is located between 21°42′15.525″N and 23°4′19.746″N latitude and 82°50′54.503″E and 83°36′1.295″E longitude in Chhattisgarh, India. The research comprises the generation of thematic maps, delineation of groundwater potential zones and the recommendation of structures for efficiently and successfully recharging groundwater utilising RS and GIS. Groundwater Potential Zones (GPZs) were identified with nine thematic layers using RS, GIS, and the Multi-Criteria Decision Analysis (MCDA) method. Satty's Analytic Hierarchy Process (AHP) was used to rank the nine parameters that were chosen. The generated GPZs map indicated regions with very low, low to medium, medium to high, and very high groundwater potential encompassing 962.44 km2, 2019.92 km2, 969.19 km2, and 1380.42 km2 of the study region, respectively. The GPZs map was found to be very accurate when compared with the groundwater fluctuation map, and it is used to manage groundwater resources in the Mand catchment. The runoff of the study area can be accommodated by the computing subsurface storage capacity, which will raise groundwater levels in the low and low to medium GPZs. According to the study results, various groundwater recharge structures such as farm ponds, check dams and percolation tanks were suggested in appropriate locations of the Mand catchment to boost groundwater conditions and meet the shortage of water resources in agriculture and domestic use. This study demonstrates that the integration of GIS can provide an efficient and effective platform for convergent analysis of various data sets for groundwater management and planning.
  •  
8.
  • Bhat, Shakeel Ahmad, et al. (author)
  • Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review
  • 2022
  • In: Sustainability. - : MDPI. - 2071-1050. ; 14:17
  • Research review (peer-reviewed)abstract
    • Biochar is a carbon-based substance made by the pyrolysis of organic waste. The amount of biochar produced is determined by the type of feedstock and pyrolysis conditions. Biochar is frequently added to the soil for various reasons, including carbon sequestration, greenhouse gas mitigation, improved crop production by boosting soil fertility, removing harmful contaminants, and drought mitigation. Biochar may also be used for waste management and wastewater treatment. Biochar’s various advantages make it a potentially appealing instrument material for current science and technology. Although biochar’s impacts on soil chemical qualities and fertility have been extensively researched, little is known about its impact on enhancing soil physical qualities. This review is intended to describe biochar’s influence on some crucial soil physical and hydrological properties, including bulk density of soil, water holding capacity, soil porosity, soil hydraulic conductivity, soil water retention, water repellence–available plant water, water infiltration, soil temperature, soil color, and surface albedo. Therefore, we propose that the application of biochar in soils has considerable advantages, and this is especially true for arable soils with low fertility.
  •  
9.
  • da Fonseca, Cláudia Adriana Bueno, et al. (author)
  • Investigating Relationships between Runoff–Erosion Processes and Land Use and Land Cover Using Remote Sensing Multiple Gridded Datasets
  • 2022
  • In: ISPRS International Journal of Geo-Information. - : MDPI. - 2220-9964. ; 11:5
  • Journal article (peer-reviewed)abstract
    • Climate variability, land use and land cover changes (LULCC) have a considerable impact on runoff–erosion processes. This study analyzed the relationships between climate variability and spatiotemporal LULCC on runoff–erosion processes in different scenarios of land use and land cover (LULC) for the Almas River basin, located in the Cerrado biome in Brazil. Landsat images from 1991, 2006, and 2017 were used to analyze changes and the LULC scenarios. Two simulations based on the Soil and Water Assessment Tool (SWAT) were compared: (1) default application using the standard model database (SWATd), and (2) application using remote sensing multiple gridded datasets (albedo and leaf area index) downloaded using the Google Earth Engine (SWATrs). In addition, the SWAT model was applied to analyze the impacts of streamflow and erosion in two hypothetical scenarios of LULC. The first scenario was the optimistic scenario (OS), which represents the sustainable use and preservation of natural vegetation, emphasizing the recovery of permanent preservation areas close to watercourses, hilltops, and mountains, based on the Brazilian forest code. The second scenario was the pessimistic scenario (PS), which presents increased deforestation and expansion of farming activities. The results of the LULC changes show that between 1991 and 2017, the area occupied by agriculture and livestock increased by 75.38%. These results confirmed an increase in the sugarcane plantation and the number of cattle in the basin. The SWAT results showed that the difference between the simulated streamflow for the PS was 26.42%, compared with the OS. The sediment yield average estimation in the PS was 0.035 ton/ha/year, whereas in the OS, it was 0.025 ton/ha/year (i.e., a decrease of 21.88%). The results demonstrated that the basin has a greater predisposition for increased streamflow and sediment yield due to the LULC changes. In addition, measures to contain the increase in agriculture should be analyzed by regional managers to reduce soil erosion in this biome.
  •  
10.
  • Dimple, Dimple, et al. (author)
  • Determining the Hydrological Behaviour of Catchment Based on Quantitative Morphometric Analysis in the Hard Rock Area of Nand Samand Catchment, Rajasthan, India
  • 2022
  • In: Hydrology. - : MDPI. - 2306-5338. ; 9:2
  • Journal article (peer-reviewed)abstract
    • India’s water resources are under tremendous pressure due to elevated demand for various purposes. The over-exploitation of these valuable resources has resulted in an imbalance in the watershed ecology. The application of spatial analysis tools in studying the morphological behaviour of watersheds has increased in recent decades worldwide due to the accessibility of the geospatial database. A morphometric analysis of a river basin is vital to determine the hydrological behaviour to develop effective management. Under the current study, morphological behaviour of Nand Samand catchment in the hard rock region was evaluated employing remote sensing (RS) and geographical information system (GIS) tools. The Nand Samand catchment (Rajasthan State, India) has an area of 865.18 km2 with the highest and lowest elevations of 1318 m and 570 m above mean sea level, respectively. This study utilises a 30 m high-spatial-resolution ASTER imagery digital elevation model for delineating the catchment. The drainage network is assessed using a GIS method, and morphometric parameters like linear, areal, and relief aspects were calculated. Results were obtained for parameters viz., basin length of 82.66 km, constant channel maintenance equal to 0.68 km, stream frequency of 2.11 km−2, drainage density of 1.48 km−1, and length overflow of 0.34 km. Form factor of 0.13, and the circulatory ratio of 0.28 showed that an elongated shape characterises the study area. The results would help understand the relationship between hydrological variables and geomorphological parameters for better decision-making. The techniques used could effectively help to perform better drainage basin and channel network morphometric analyses. The found morphometric characteristics will be helpful in understanding the Nand Samand catchment and similar areas in India in order to better guide the decision-makers in providing adequate policy to the development of the region
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view