SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kumar Manoj) "

Search: WFRF:(Kumar Manoj)

  • Result 1-10 of 85
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lozano, Rafael, et al. (author)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Journal article (peer-reviewed)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
2.
  •  
3.
  •  
4.
  • Jena, Manoj Kumar, et al. (author)
  • Molecular complexity of mammary glands development : a review of lactogenic differentiation in epithelial cells
  • 2023
  • In: Artificial Cells, Nanomedicine and Biotechnology. - 2169-1401. ; 51:1, s. 491-508
  • Journal article (peer-reviewed)abstract
    • The mammary gland is a dynamic organ with various physiological processes like cellular proliferation, differentiation, and apoptosis during the pregnancy-lactation-involution cycle. It is essential to understand the molecular changes during the lactogenic differentiation of mammary epithelial cells (MECs, the milk-synthesizing cells). The MECs are organized as luminal milk-secreting cells and basal myoepithelial cells (responsible for milk ejection by contraction) that form the alveoli. The branching morphogenesis and lactogenic differentiation of the MECs prepare the gland for lactation. This process is governed by many molecular mediators including hormones, growth factors, cytokines, miRNAs, regulatory proteins, etc. Interestingly, various signalling pathways guide lactation and understanding these molecular transitions from pregnancy to lactation will help researchers design further research. Manipulation of genes responsible for milk synthesis and secretion will promote augmentation of milk yield in dairy animals. Identifying protein signatures of lactation will help develop strategies for persistent lactation and shortening the dry period in farm animals. The present review article discusses in details the physiological and molecular changes occurring during lactogenic differentiation of MECs and the associated hormones, regulatory proteins, miRNAs, and signalling pathways. An in-depth knowledge of the molecular events will aid in developing engineered cellular models for studies related to mammary gland diseases of humans and animals.
  •  
5.
  • Kim, Min Seo, et al. (author)
  • Global burden of peripheral artery disease and its risk factors, 1990-2019 : a systematic analysis for the Global Burden of Disease Study 2019
  • 2023
  • In: The Lancet Global Health. - : Elsevier. - 2214-109X. ; 11:10, s. E1553-E1565
  • Journal article (peer-reviewed)abstract
    • Background: Peripheral artery disease is a growing public health problem. We aimed to estimate the global disease burden of peripheral artery disease, its risk factors, and temporospatial trends to inform policy and public measures.Methods: Data on peripheral artery disease were modelled using the Global Burden of Disease, Injuries, and Risk Factors Study (GBD) 2019 database. Prevalence, disability-adjusted life years (DALYs), and mortality estimates of peripheral artery disease were extracted from GBD 2019. Total DALYs and age-standardised DALY rate of peripheral artery disease attributed to modifiable risk factors were also assessed.Findings: In 2019, the number of people aged 40 years and older with peripheral artery disease was 113 million (95% uncertainty interval [UI] 99 center dot 2-128 center dot 4), with a global prevalence of 1 center dot 52% (95% UI 1 center dot 33-1 center dot 72), of which 42 center dot 6% was in countries with low to middle Socio-demographic Index (SDI). The global prevalence of peripheral artery disease was higher in older people, (14 center dot 91% [12 center dot 41-17 center dot 87] in those aged 80-84 years), and was generally higher in females than in males. Globally, the total number of DALYs attributable to modifiable risk factors in 2019 accounted for 69 center dot 4% (64 center dot 2-74 center dot 3) of total peripheral artery disease DALYs. The prevalence of peripheral artery disease was highest in countries with high SDI and lowest in countries with low SDI, whereas DALY and mortality rates showed U-shaped curves, with the highest burden in the high and low SDI quintiles.Interpretation: The total number of people with peripheral artery disease has increased globally from 1990 to 2019. Despite the lower prevalence of peripheral artery disease in males and low-income countries, these groups showed similar DALY rates to females and higher-income countries, highlighting disproportionate burden in these groups. Modifiable risk factors were responsible for around 70% of the global peripheral artery disease burden. Public measures could mitigate the burden of peripheral artery disease by modifying risk factors.
  •  
6.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
7.
  • Kumar, Manoj, et al. (author)
  • Arsenic distribution and mobilization : A case study of three districts of uttar pradesh and bihar (india)
  • 2015
  • In: Safe and Sustainable Use of Arsenic-Contaminated Aquifers in the Gangetic Plain. - Cham : Springer Publishing Company. - 9783319161242 - 9783319161235 ; , s. 111-123
  • Book chapter (other academic/artistic)abstract
    • Tectonic evolution of Himalayas is related to high erosional potential and substantial sediment transport. Fluvial deposition of clastic material in the Middle Gangetic plain (MGP) is mainly governed by crustal deformation and climatic condition of Himalayas (Singh M, Singh IB, Müller G, Geomorphology 86:144-175, 2007). Seven large Asian rivers-Ganga, Indus, Brahmaputra, Yangtze, Huang He or Yellow River, Salween and Mekong-are fed by Himalayan glaciers which are supplying ~30 % of the global sediments to the ocean (Milliman JD, Meade RH, J Geol 9:1-19, 1983; Singh VB, Ramanathan AL, Pottakkal JG, Kumar M, J Asian Earth Sci 79:224-234, 2014, 2005). High flux of sediment transported from different terrain of Himalayas is product of geologically young rock formation (Singh VB, Ramanathan AL, Pottakkal JG, Kumar M, J Asian Earth Sci 79:224-234, 2014). It provides an opportunity to study the fluvial system and post-depositional changes in sediment water interaction depending on the degree of mobility of element under the altered environmental conditions. Arsenic (As) contamination of groundwater is a global problem. Understanding of As mobilization from sediments to As-contaminated aquifers is important for water quality management in areas of MGP of India.
  •  
8.
  • Awasthi, Mukesh Kumar, et al. (author)
  • Advanced approaches for resource recovery from wastewater and activated sludge: A review
  • 2023
  • In: Bioresource Technology. - 0960-8524 .- 1873-2976. ; 384
  • Research review (peer-reviewed)abstract
    • Due to resource scarcity, current industrial systems are switching from waste treatment, such as wastewater treatment and biomass, to resource recovery (RR). Biofuels, manure, pesticides, organic acids, and other bioproducts with a great market value can be produced from wastewater and activated sludge (AS). This will not only help in the transition from a linear economy to a circular economy, but also contribute to sustainable development. However, the cost of recovering resources from wastewater and AS to produce value-added products is quite high as compared to conventional treatment methods. In addition, most antioxidant technologies remain at the laboratory scale that have not yet reached the level at industrial scale. In order to promote the innovation of resource recovery technology, the various methods of treating wastewater and AS to produce biofuels, nutrients and energy are reviewed, including biochemistry, thermochemistry and chemical stabilization. The limitations of wastewater and AS treatment methods are prospected from biochemical characteristics, economic and environmental factors. The biofuels derived from third generation feedstocks, such as wastewater are more sustainable. Microalgal biomass are being used to produce biodiesel, bioethanol, biohydrogen, biogas, biooils, bioplastics, biofertilizers, biochar and biopesticides. New technologies and policies can promote a circular economy based on biological materials.
  •  
9.
  • Li, Yue, et al. (author)
  • Sustainable Conversion of Biowaste to Energy to Tackle the Emerging Pollutants: A Review
  • 2023
  • In: Current Pollution Reports. - : Springer. - 2198-6592.
  • Research review (peer-reviewed)abstract
    • Biowaste is a major source of organic material that can be converted into energy through various processes such as anaerobic digestion, composting, and pyrolysis. However, emerging pollutants, such as pharmaceuticals, pesticides, herbicides, and personal and household products, are a growing concern in wastewater treatment that can be effectively removed by biowaste-to-energy processes. While these contaminants pose significant challenges, the development and implementation of effective monitoring programs and risk assessment tools help to mitigate their impact on human health and the environment. Likewise, monitoring programs, challenges, legislations, and risk assessment tools are essential for understanding and managing the risks associated with emerging pollutants. Biowaste recycling is an important aspect of a biocircular economy perspective as it involves the conversion of organic waste into valuable resources that can be reused sustainably. The review discusses the modern approaches that offer several advantages, including reducing the waste disposal and generating renewable energy while addressing emerging wastewater treatment pollutants. To achieve the goal of a circular economy, modern biotechnological approaches including anaerobic digestion, composting, bioleaching, bioremediation, and microbial fuel cells offer a sustainable and effective way to convert waste into valuable products. These bioproducts alongside energy generation using waste-to-energy technologies can provide economic benefits through revenue generation, reduced waste disposal costs, and improved resource efficiency. To achieve a biocircular economy for biowaste valorization, several stakeholders, including waste collectors, waste management companies, policymakers, and consumers need to be involved. The sustainable conversion of biowaste to energy is an essential and instrumental technology in environmental sustainability.
  •  
10.
  • Kumar R, Avinash, et al. (author)
  • The hydraulic and thermal performances of rectangular and square microchannel with different hydraulic diameters cooled by graphene–platinum hybrid nanofluid
  • 2022
  • In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. - : SAGE Publications. - 2041-2983 .- 0954-4062. ; 236:13, s. 7473-7483
  • Journal article (peer-reviewed)abstract
    • The objective of this paper is to analyze the effect of hydraulic diameter and channel shape on the thermal and hydrodynamic characteristics of a microchannel cooled by Graphene–Platinum/water hybrid nanofluid for electronic cooling applications. The study was performed numerically using mathematical software called Maple 19.0. Microchannels having square and rectangular cross-sections, and hydraulic diameters ranging from 200 µm to 1,000 µm were taken into consideration. Thermal resistance, heat transfer coefficient, pressure drop, and friction factor were evaluated for different conditions and their corresponding graphs are presented and discussed. It was evident from the results that low thermal resistance and high heat transfer coefficient was achieved upon decreasing the hydraulic diameter, which is favorable for the cooling of electronic chips and devices. Based on the Reynolds number, the heat transfer coefficient increased by 2–4 times for both rectangular and square microchannels, on decreasing the hydraulic diameter from highest value (1,000 µm) to lowest value (200 µm). However, friction factor and pressure drop increased for channels with lower hydraulic diameters. In addition, rectangular microchannels exhibited better heat transfer performance, while square microchannels had lower friction factor and pressure drop. Rectangular microchannels presented a maximum enhancement of 30% in heat transfer coefficient and a reduction of 18% in thermal resistance, when compared to square microchannels. The results also suggested that the performance of microchannels with 500 µm hydraulic diameter is balanced, considering both heat transfer performance and pressure drop constraints.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 85
Type of publication
journal article (57)
conference paper (11)
research review (7)
other publication (4)
doctoral thesis (2)
book chapter (2)
show more...
artistic work (1)
reports (1)
book (1)
show less...
Type of content
peer-reviewed (71)
other academic/artistic (12)
pop. science, debate, etc. (2)
Author/Editor
Kumar, Manoj (21)
Sundberg, Björn (9)
Wang, Lichuan (6)
Gerber, Lorenz (6)
Larsson, Anders (5)
Niittylä, Totte (5)
show more...
Pal, Rudrajeet, Doce ... (5)
Ekwall, Daniel, 1974 ... (5)
Gorzsás, András (5)
Pal, Rudrajeet (4)
Pal, Rudrajeet, Bitr ... (4)
Chen, Yan (4)
Mellerowicz, Ewa (4)
Pal, Rudrajeet, Full ... (4)
Sahebkar, Amirhossei ... (3)
Aboyans, Victor (3)
Hay, Simon I. (3)
Alahdab, Fares (3)
Bensenor, Isabela M. (3)
Jonas, Jost B. (3)
Lorkowski, Stefan (3)
Mokdad, Ali H. (3)
Naghavi, Mohsen (3)
Roth, Gregory A. (3)
Sepanlou, Sadaf G. (3)
Yonemoto, Naohiro (3)
Murray, Christopher ... (3)
Lim, Stephen S. (3)
Mirrakhimov, Erkin M ... (3)
Singh, Jasvinder A. (3)
Westerman, Ronny (3)
Sanyal, Biplab (3)
Rawaf, Salman (3)
Wingsle, Gunnar (3)
Ekwall, Daniel (3)
Solanki, Manoj Kumar (3)
Banach, Maciej (3)
Bandaru, Manoj Kumar ... (3)
Emmanouilidou, Anast ... (3)
den Hoed, Marcel (3)
Vovusha, Hakkim (3)
Chung, Sheng-Chia (3)
Cirillo, Massimo (3)
Remuzzi, Giuseppe (3)
Gill, Paramjit Singh (3)
Moraga, Paula (3)
Radfar, Amir (3)
Rahman, Muhammad Azi ... (3)
Renzaho, Andre M. N. (3)
Roever, Leonardo (3)
show less...
University
University of Borås (28)
Swedish University of Agricultural Sciences (14)
Umeå University (12)
Uppsala University (12)
Lund University (10)
Royal Institute of Technology (9)
show more...
Linköping University (7)
Stockholm University (6)
Karolinska Institutet (5)
Luleå University of Technology (4)
Chalmers University of Technology (3)
University of Gävle (2)
Linnaeus University (2)
Högskolan Dalarna (2)
University of Gothenburg (1)
Mälardalen University (1)
Södertörn University (1)
University of Skövde (1)
RISE (1)
Sophiahemmet University College (1)
show less...
Language
English (85)
Research subject (UKÄ/SCB)
Natural sciences (32)
Social Sciences (23)
Medical and Health Sciences (15)
Engineering and Technology (12)
Agricultural Sciences (10)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view