SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Thalakkale Veettil Unnimaya 1998 ) "

Search: WFRF:(Thalakkale Veettil Unnimaya 1998 )

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Almenara Perez, Naroa, et al. (author)
  • Lignin–Chitosan Gel Polymer Electrolytes for Stable Zn Electrodeposition
  • 2023
  • In: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 11:6, s. 2283-2294
  • Journal article (peer-reviewed)abstract
    • Electrochemical energy storage technologies offer means to transition toward a decarbonized society and carbon neutrality by 2050. Compared to conventional lithium-ion batteries, aqueous zinc-ion chemistries do not require scarce materials or toxic and flammable organic-based electrolytes to function, making them favorable contenders in the scenario of intensifying climate change and supply chain crisis. However, environmentally benign and bio-based materials are needed to substitute fossil-based battery materials. Accordingly, this work taps into the possibilities of lignin together with chitosan to form gel polymer electrolytes (GPEs) for zinc-ion chemistries. A simple fabrication process enabling free-standing sodium lignosulfonate–chitosan and micellar lignosulfonate–kraft lignin–chitosan GPEs with diameters exceeding 80 mm is developed. The GPEs combine tensile strength with ductility, reaching Young’s moduli of 55 ± 4 to 940 ± 63 MPa and elongations at break of 14.1 ± 0.2 to 43.9 ± 21.1%. Competitive ionic conductivities ranging from 3.8 to 18.6 mS cm–1 and electrochemical stability windows of up to +2.2 V vs Zn2+/Zn were observed. Given the improved interfacial adhesion of the GPEs with metallic Zn promoted by the anionic groups of the lignosulfonate, a stable cycling of the Zn anode is obtained. As a result, GPEs can operate at 5000 μA cm–2 with no short-circuit and Coulombic efficiencies above 99.7%, outperforming conventional separator–liquid electrolyte configurations such as the glass microfiber separator soaked into 2 M ZnSO4 aqueous electrolyte, which short-circuits after 100 μA cm–2. This work demonstrates the potential of underutilized biorefinery side-streams and marine waste as electrolytes in the battery field, opening new alternatives in the sustainable energy storage landscape beyond LIBs.
  •  
2.
  • Liu, Jinrong, 1995-, et al. (author)
  • High-yield production of lignin photonic crystals with ethanol and water
  • Other publication (other academic/artistic)abstract
    • Structural colors in nature have inspired research into engineered photonic materials starting from renewable resources such as lignin extracted from wood and agricultural residues. A notable obstacle in developing lignin-based photonic crystals lies in the use of hazardous organic solvents, giving rise to safety and environmental concerns. Additionally, low product yields hinder scalable production of lignin photonics. Here, we report a highly efficient method for the fabrication of colloidal lignin particles of predicable size for producing photonic crystals using ethanol and water as the sole solvents. We achieved a 78% mass yield of photonic crystals starting from a crude soda lignin, resulting in vibrant colors spanning the entire visible spectrum. Controlling the particle size can be achieved by varying the dilution rate of a lignin ethanol solution with water, enabling the direct generation of colloidal crystals of preferred colors. The new method paves the way for large-scale development of lignin photonics.
  •  
3.
  • Thalakkale Veettil, Unnimaya, 1998-, et al. (author)
  • Mechanically recyclable melt-spun fibers from lignin esters and iron oxide nanoparticles : towards circular lignin materials
  • 2023
  • In: Green Chemistry. - 1463-9262 .- 1463-9270. ; 25:24, s. 10424-10435
  • Journal article (peer-reviewed)abstract
    • The inferior thermoplastic properties have limited production of melt-spun fibers from lignin. Here we report on the controlled esterification of softwood kraft lignin (SKL) to enable scalable, solvent-free melt spinning of microfibers using a cotton candy machine. We found that it is crucial to control the esterification process as melt-spun fibers could be produced from lignin oleate and lignin stearate precursors with degrees of esterification (DE) ranging from 20-50%, but not outside this range. To fabricate a functional hybrid material, we incorporated magnetite nanoparticles (MNPs) into the lignin oleate fibers by melt blending and subsequent melt spinning. Thermogravimetric analysis and X-ray diffraction studies revealed that increasing the weight fraction of MNPs led to improved thermal stability of the fibers. Finally, we demonstrated adsorption of organic dyes, magnetic recovery, and recycling via melt spinning of the regular and magnetic fibers with 95% and 83% retention of the respective adsorption capacities over three adsorption cycles. The mechanical recyclability of the microfibers represents a new paradigm in lignin-based circular materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view