SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tzoumas Kostas) "

Search: WFRF:(Tzoumas Kostas)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Carbone, Paris, 1986-, et al. (author)
  • Lightweight Asynchronous Snapshots for Distributed Dataflows
  • 2015
  • Reports (other academic/artistic)abstract
    • Distributed stateful stream processing enables the deployment and execution of large scale continuous computations in the cloud, targeting both low latency and high throughput. One of the most fundamental challenges of this paradigm is providing processing guarantees under potential failures. Existing approaches rely on periodic global state snapshots that can be used for failure recovery. Those approaches suffer from two main drawbacks. First, they often stall the overall computation which impacts ingestion. Second, they eagerly persist all records in transit along with the operation states which results in larger snapshots than required. In this work we propose Asynchronous Barrier Snapshotting (ABS), a lightweight algorithm suited for modern dataflow execution engines that minimises space requirements. ABS persists only operator states on acyclic execution topologies while keeping a minimal record log on cyclic dataflows. We implemented ABS on Apache Flink, a distributed analytics engine that supports stateful stream processing. Our evaluation shows that our algorithm does not have a heavy impact on the execution, maintaining linear scalability and performing well with frequent snapshots. 
  •  
3.
  • Carbone, Paris, et al. (author)
  • State Management in Apache Flink : Consistent Stateful Distributed Stream Processing
  • 2017
  • In: Proceedings of the VLDB Endowment. - : ACM Digital Library. - 2150-8097. ; 10, s. 1718-1729
  • Journal article (peer-reviewed)abstract
    • Stream processors are emerging in industry as an apparatus that drives analytical but also mission critical services handling the core of persistent application logic. Thus, apart from scalability and low-latency, a rising system need is first-class support for application state together with strong consistency guarantees, and adaptivity to cluster reconfigurations, software patches and partial failures. Although prior systems research has addressed some of these specific problems, the practical challenge lies on how such guarantees can be materialized in a transparent, non-intrusive manner that relieves the user from unnecessary constraints. Such needs served as the main design principles of state management in Apache Flink, an open source, scalable stream processor.We present Flink’s core pipelined, in-flight mechanism which guarantees the creation of lightweight, consistent, distributed snapshots of application state, progressively, without impacting continuous execution. Consistent snapshots cover all needs for system reconfiguration, fault tolerance and version management through coarse grained rollback recovery. Application state is declared explicitly to the system, allowing efficient partitioning and transparent commits to persistent storage. We further present Flink’s backend implementations and mechanisms for high availability, external state queries and output commit. Finally, we demonstrate how these mechanisms behave in practice with metrics and large deployment insights exhibiting the low performance trade-offs of our approach and the general benefits of exploiting asynchrony in continuous, yet sustainable system deployments.
  •  
4.
  • Kalavri, Vasiliki, et al. (author)
  • Asymmetry in Large-Scale Graph Analysis, Explained
  • 2014
  • In: <em>Proceedings of the Second International Workshop on Graph Data ManagementExperience and Systems (GRADES 2014)</em>, June 22, 2014, Snowbird, Utah, USA.. - New York, NY, USA : ACM.
  • Conference paper (peer-reviewed)abstract
    • Iterative computations are in the core of large-scale graph processing. In these applications, a set of parameters is continuously refined, until a fixed point is reached. Such fixed point iterations often exhibit non-uniform computational behavior, where changes propagate with different speeds throughout the parameter set, making them active or inactive during iterations. This asymmetrical behavior can lead to a many redundant computations, if not exploited. Many specialized graph processing systems and APIs exist that run iterative algorithms efficiently exploiting this asymmetry. However, their functionality is sometimes vaguely defined and due to their different programming models and terminology used, it is often challenging to derive equivalence between them. We describe an optimization framework for iterative graph processing, which utilizes dataset dependencies. We explain several optimization techniques that exploit asymmetrical behavior of graph algorithms. We formally specify the conditions under which, an algorithm can use a certain technique. We also design template execution plans, using a canonical set of dataflow operators and we evaluate them using real-world datasets and applications. Our experiments show that optimized plans can significantly reduce execution time, often by an order of magnitude. Based on our experiments, we identify a trade-off that can be easily captured and could serve as the basis for automatic optimization of large-scale graph-processing applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view